Distinguishing Ulva prolifera and Sargassum horneri by using multi-feature-based ResUnet algorithm

Bhattacharyya距离 特征(语言学) 模式识别(心理学) 特征选择 人工智能 特征提取 分割 计算机科学 遥感 地理 语言学 哲学
作者
Jinyu Li,Shengjia Zhang,Chao Zhang,Hongchun Zhu
出处
期刊:Marine Geodesy [Taylor & Francis]
卷期号:46 (4): 376-401 被引量:2
标识
DOI:10.1080/01490419.2023.2197265
摘要

In recent years, two types of macroalgae, namely, Ulva prolifera and Sargassum horneri, have appeared occasionally together in the Yellow Sea and the East China Sea. Remote sensing enables timely and cost-effective observation of macroalgae across large areas. In the available studies, the recognition and classification of the two macroalgae are primarily based on spectral difference analysis. In this study, the spectral features, indices and textural feature parameters of the macroalgae targets were extracted and a preliminary multi-feature dataset was constructed based on Sentinel-2 images. Feature selection was performed using SHAP-based importance analysis and Bhattacharyya distance. From this, a multi-feature dataset was created and used as an input to a deep semantic segmentation network of improved ResUnet. The experiments of intelligent recognition and classification of U. prolifera and S. horneri were carried out using the proposed multi-feature-based ResUnet algorithm, with specific F1-scores of 96.7% and 96.8%, respectively. The proposed multi-feature-based ResUnet algorithm can obtain efficient and high-accuracy results for the recognition and classification of marine floating macroalgae. It achieves accurate remote sensing monitoring of the two types of marine floating macroalgae and has significant theoretical research significance and practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nan发布了新的文献求助10
1秒前
快乐雅青发布了新的文献求助10
2秒前
007完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
阿龙发布了新的文献求助10
5秒前
csm完成签到,获得积分10
6秒前
6秒前
6秒前
之贻完成签到,获得积分10
6秒前
wangyiren发布了新的文献求助10
7秒前
科目三应助Gray采纳,获得10
7秒前
胡123456789完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
车车发布了新的文献求助10
8秒前
希望天下0贩的0应助哈鲤采纳,获得10
8秒前
早上坏完成签到,获得积分10
9秒前
李凭中国弹箜篌完成签到,获得积分10
9秒前
bing发布了新的文献求助10
9秒前
搜集达人应助cangmingzi采纳,获得10
9秒前
10秒前
小二郎应助莹莹啊采纳,获得10
10秒前
科研通AI2S应助龙龙不卷采纳,获得10
10秒前
10秒前
静心发布了新的文献求助10
10秒前
wwz应助时尚的乐儿采纳,获得10
11秒前
Owen应助2711采纳,获得10
11秒前
阳佟雪旋发布了新的文献求助10
11秒前
12秒前
12秒前
Lucas应助Melody采纳,获得10
12秒前
仄言完成签到,获得积分10
12秒前
炼丹师应助是你采纳,获得20
13秒前
医路前行完成签到 ,获得积分10
13秒前
13秒前
xW12123完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609