Distinguishing Ulva prolifera and Sargassum horneri by using multi-feature-based ResUnet algorithm

Bhattacharyya距离 特征(语言学) 模式识别(心理学) 特征选择 人工智能 特征提取 分割 计算机科学 遥感 地理 语言学 哲学
作者
Jinyu Li,Shengjia Zhang,Chao Zhang,Hongchun Zhu
出处
期刊:Marine Geodesy [Taylor & Francis]
卷期号:46 (4): 376-401 被引量:2
标识
DOI:10.1080/01490419.2023.2197265
摘要

In recent years, two types of macroalgae, namely, Ulva prolifera and Sargassum horneri, have appeared occasionally together in the Yellow Sea and the East China Sea. Remote sensing enables timely and cost-effective observation of macroalgae across large areas. In the available studies, the recognition and classification of the two macroalgae are primarily based on spectral difference analysis. In this study, the spectral features, indices and textural feature parameters of the macroalgae targets were extracted and a preliminary multi-feature dataset was constructed based on Sentinel-2 images. Feature selection was performed using SHAP-based importance analysis and Bhattacharyya distance. From this, a multi-feature dataset was created and used as an input to a deep semantic segmentation network of improved ResUnet. The experiments of intelligent recognition and classification of U. prolifera and S. horneri were carried out using the proposed multi-feature-based ResUnet algorithm, with specific F1-scores of 96.7% and 96.8%, respectively. The proposed multi-feature-based ResUnet algorithm can obtain efficient and high-accuracy results for the recognition and classification of marine floating macroalgae. It achieves accurate remote sensing monitoring of the two types of marine floating macroalgae and has significant theoretical research significance and practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助naturehome采纳,获得10
刚刚
1秒前
今朝何夕发布了新的文献求助10
1秒前
纯真保温杯完成签到 ,获得积分10
2秒前
2秒前
万能图书馆应助now采纳,获得10
2秒前
2秒前
彩色的老五完成签到,获得积分10
3秒前
Ava应助迅语采纳,获得10
3秒前
4秒前
5秒前
6秒前
cheers发布了新的文献求助10
6秒前
7秒前
skyer应助QDL采纳,获得10
7秒前
7秒前
科研通AI2S应助waoller1采纳,获得10
7秒前
7秒前
回鱼发布了新的文献求助10
7秒前
刚睡醒完成签到,获得积分20
8秒前
water应助知名不具采纳,获得10
8秒前
华仔应助知名不具采纳,获得10
8秒前
8秒前
9秒前
大个应助kyJYbs采纳,获得10
9秒前
紧张的书本完成签到,获得积分20
10秒前
文安完成签到,获得积分10
10秒前
10秒前
哦哦哦完成签到,获得积分20
11秒前
刚睡醒发布了新的文献求助10
11秒前
汪丽娜完成签到,获得积分10
11秒前
cheers完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
kreys发布了新的文献求助20
13秒前
13秒前
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126