Distinguishing Ulva prolifera and Sargassum horneri by using multi-feature-based ResUnet algorithm

Bhattacharyya距离 特征(语言学) 模式识别(心理学) 特征选择 人工智能 特征提取 分割 计算机科学 遥感 地理 语言学 哲学
作者
Jinyu Li,Shengjia Zhang,Chao Zhang,Hongchun Zhu
出处
期刊:Marine Geodesy [Informa]
卷期号:46 (4): 376-401 被引量:2
标识
DOI:10.1080/01490419.2023.2197265
摘要

In recent years, two types of macroalgae, namely, Ulva prolifera and Sargassum horneri, have appeared occasionally together in the Yellow Sea and the East China Sea. Remote sensing enables timely and cost-effective observation of macroalgae across large areas. In the available studies, the recognition and classification of the two macroalgae are primarily based on spectral difference analysis. In this study, the spectral features, indices and textural feature parameters of the macroalgae targets were extracted and a preliminary multi-feature dataset was constructed based on Sentinel-2 images. Feature selection was performed using SHAP-based importance analysis and Bhattacharyya distance. From this, a multi-feature dataset was created and used as an input to a deep semantic segmentation network of improved ResUnet. The experiments of intelligent recognition and classification of U. prolifera and S. horneri were carried out using the proposed multi-feature-based ResUnet algorithm, with specific F1-scores of 96.7% and 96.8%, respectively. The proposed multi-feature-based ResUnet algorithm can obtain efficient and high-accuracy results for the recognition and classification of marine floating macroalgae. It achieves accurate remote sensing monitoring of the two types of marine floating macroalgae and has significant theoretical research significance and practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
libra_D完成签到,获得积分10
1秒前
小于爱科研完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得20
2秒前
小马甲应助YA采纳,获得10
2秒前
2秒前
聆琳发布了新的文献求助20
2秒前
yin应助科研通管家采纳,获得20
2秒前
情怀应助科研通管家采纳,获得10
2秒前
修仙应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
小王完成签到,获得积分10
3秒前
4秒前
吃猫的鱼发布了新的文献求助10
5秒前
一只熊发布了新的文献求助10
5秒前
curtisness应助单纯的不尤采纳,获得30
6秒前
jagger完成签到,获得积分10
7秒前
PAN关注了科研通微信公众号
8秒前
czqjlu发布了新的文献求助10
9秒前
9秒前
10秒前
科目三应助mxh采纳,获得10
11秒前
xue完成签到 ,获得积分10
12秒前
踏实采波完成签到,获得积分10
12秒前
12秒前
田野发布了新的文献求助30
12秒前
Orange应助QI采纳,获得10
14秒前
勤奋以蓝发布了新的文献求助10
17秒前
19秒前
19秒前
田野完成签到,获得积分10
19秒前
21秒前
YA发布了新的文献求助10
24秒前
24秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267792
求助须知:如何正确求助?哪些是违规求助? 2907197
关于积分的说明 8340871
捐赠科研通 2577894
什么是DOI,文献DOI怎么找? 1401256
科研通“疑难数据库(出版商)”最低求助积分说明 655013
邀请新用户注册赠送积分活动 634036