Realistic Mixing Miniature Scene Hyperspectral Unmixing: From Benchmark Datasets to Autonomous Unmixing

高光谱成像 计算机科学 像素 人工智能 模式识别(心理学) 水准点(测量) 基本事实 遥感 图像分辨率 计算机视觉 地理 大地测量学
作者
Chunyang Cui,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3236677
摘要

Mixed pixels that contain more than one material type are common in mid/low spatial resolution remote sensing imagery. Hyperspectral unmixing is aimed at decomposing the mixed pixels into endmembers and abundances. However, there are few datasets that are suitable for quantitatively evaluating unmixing accuracies, and the ground-truth abundances of the existing datasets are often generated in an approximate way. To address the lack of real unmixing datasets for quantitative evaluation, we built the realistic mixing miniature scenes (RMMS) dataset, which can be used to quantitatively evaluate the unmixing accuracy of different algorithms. The RMMS dataset consists of a simple mixture scene with homogeneous flat materials and a complex mixture scene with 3-D structural features. The features of the RMMS dataset also take point, line, and polygon characteristics into consideration, and the spectral similarity of the materials increases the challenge of the spectral unmixing. In the RMMS dataset, due to the multiscale observation characteristics of the spatiotemporal scanning modality, it can avoid the registration error between RGB and hyperspectral data, and it can ensure that the endmembers are pure pixels. Most of the autonomous hyperspectral unmixing algorithms focus on solving some of the unmixing problems and have difficulty achieving fully autonomous hyperspectral unmixing (FAHU). In this article, to overcome this shortcoming, a fully autonomous hyperspectral unmixing method called FAHU is proposed to take advantage of the spatial information. Some of the state-of-the-art autonomous hyperspectral unmixing algorithms are used to evaluate the performance with the RMMS dataset, and the experimental results show the advantages and disadvantages of the different autonomous unmixing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
Jasper应助liqian采纳,获得10
1秒前
liangguangyuan完成签到 ,获得积分10
1秒前
人间枝头应助文件撤销了驳回
1秒前
2秒前
2秒前
3秒前
4秒前
Yuanchaoyi完成签到,获得积分20
4秒前
务实凡灵完成签到,获得积分10
5秒前
疯了半天完成签到,获得积分10
5秒前
王强完成签到,获得积分10
6秒前
6秒前
dong东包发布了新的文献求助10
7秒前
西瓜完成签到 ,获得积分10
7秒前
小张完成签到,获得积分10
8秒前
EVEN发布了新的文献求助30
9秒前
王冉冉发布了新的文献求助10
9秒前
9秒前
研无止境w发布了新的文献求助10
10秒前
12秒前
奶油泡fu完成签到 ,获得积分10
12秒前
dong东包完成签到,获得积分20
13秒前
13秒前
ED应助cccccc采纳,获得10
13秒前
shangziru发布了新的文献求助10
14秒前
漠之梦完成签到,获得积分20
15秒前
sc完成签到,获得积分10
15秒前
谦让的含海完成签到,获得积分10
15秒前
好运連連完成签到,获得积分10
16秒前
18秒前
liu完成签到,获得积分10
18秒前
飞翔的霸天哥应助Yuanchaoyi采纳,获得30
19秒前
香蕉觅云应助WJH采纳,获得10
20秒前
汉堡包应助研友_LOoomL采纳,获得10
20秒前
小二郎应助Felix采纳,获得10
20秒前
zaphkiel完成签到 ,获得积分10
21秒前
健壮的囧完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048