Realistic Mixing Miniature Scene Hyperspectral Unmixing: From Benchmark Datasets to Autonomous Unmixing

高光谱成像 计算机科学 像素 人工智能 模式识别(心理学) 水准点(测量) 基本事实 遥感 图像分辨率 计算机视觉 地理 大地测量学
作者
Chunyang Cui,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3236677
摘要

Mixed pixels that contain more than one material type are common in mid/low spatial resolution remote sensing imagery. Hyperspectral unmixing is aimed at decomposing the mixed pixels into endmembers and abundances. However, there are few datasets that are suitable for quantitatively evaluating unmixing accuracies, and the ground-truth abundances of the existing datasets are often generated in an approximate way. To address the lack of real unmixing datasets for quantitative evaluation, we built the realistic mixing miniature scenes (RMMS) dataset, which can be used to quantitatively evaluate the unmixing accuracy of different algorithms. The RMMS dataset consists of a simple mixture scene with homogeneous flat materials and a complex mixture scene with 3-D structural features. The features of the RMMS dataset also take point, line, and polygon characteristics into consideration, and the spectral similarity of the materials increases the challenge of the spectral unmixing. In the RMMS dataset, due to the multiscale observation characteristics of the spatiotemporal scanning modality, it can avoid the registration error between RGB and hyperspectral data, and it can ensure that the endmembers are pure pixels. Most of the autonomous hyperspectral unmixing algorithms focus on solving some of the unmixing problems and have difficulty achieving fully autonomous hyperspectral unmixing (FAHU). In this article, to overcome this shortcoming, a fully autonomous hyperspectral unmixing method called FAHU is proposed to take advantage of the spatial information. Some of the state-of-the-art autonomous hyperspectral unmixing algorithms are used to evaluate the performance with the RMMS dataset, and the experimental results show the advantages and disadvantages of the different autonomous unmixing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiang应助南宫萍采纳,获得10
1秒前
施帅完成签到,获得积分10
2秒前
same发布了新的文献求助10
2秒前
南湖秋水发布了新的文献求助10
2秒前
朴素的月光完成签到,获得积分10
2秒前
所所应助清脆的白开水采纳,获得10
3秒前
4秒前
lalala应助Rgly采纳,获得20
4秒前
4秒前
123发布了新的文献求助10
4秒前
wanghao发布了新的文献求助10
5秒前
烟花应助长生采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
热心初阳发布了新的文献求助10
6秒前
6秒前
6秒前
阿毛完成签到,获得积分10
7秒前
鱼肉蛋奶发布了新的文献求助10
8秒前
书双完成签到,获得积分20
8秒前
Doctor异乡人完成签到,获得积分10
8秒前
kinounoaozora发布了新的文献求助10
9秒前
AOPs完成签到,获得积分10
9秒前
SPark发布了新的文献求助10
9秒前
9秒前
老实怀蝶发布了新的文献求助10
10秒前
10秒前
mm发布了新的文献求助10
10秒前
郭志强完成签到,获得积分10
12秒前
liwai完成签到,获得积分20
13秒前
14秒前
研友_8R7b2L完成签到,获得积分10
14秒前
日月发布了新的文献求助10
14秒前
薄何味的猫完成签到 ,获得积分10
15秒前
Carl完成签到,获得积分10
15秒前
元友容发布了新的文献求助10
15秒前
乘风破浪发布了新的文献求助10
17秒前
田様应助123采纳,获得10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309005
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508619
捐赠科研通 2617432
什么是DOI,文献DOI怎么找? 1430073
科研通“疑难数据库(出版商)”最低求助积分说明 664018
邀请新用户注册赠送积分活动 649234