Realistic Mixing Miniature Scene Hyperspectral Unmixing: From Benchmark Datasets to Autonomous Unmixing

高光谱成像 计算机科学 像素 人工智能 模式识别(心理学) 水准点(测量) 基本事实 遥感 图像分辨率 计算机视觉 地理 大地测量学
作者
Chunyang Cui,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3236677
摘要

Mixed pixels that contain more than one material type are common in mid/low spatial resolution remote sensing imagery. Hyperspectral unmixing is aimed at decomposing the mixed pixels into endmembers and abundances. However, there are few datasets that are suitable for quantitatively evaluating unmixing accuracies, and the ground-truth abundances of the existing datasets are often generated in an approximate way. To address the lack of real unmixing datasets for quantitative evaluation, we built the realistic mixing miniature scenes (RMMS) dataset, which can be used to quantitatively evaluate the unmixing accuracy of different algorithms. The RMMS dataset consists of a simple mixture scene with homogeneous flat materials and a complex mixture scene with 3-D structural features. The features of the RMMS dataset also take point, line, and polygon characteristics into consideration, and the spectral similarity of the materials increases the challenge of the spectral unmixing. In the RMMS dataset, due to the multiscale observation characteristics of the spatiotemporal scanning modality, it can avoid the registration error between RGB and hyperspectral data, and it can ensure that the endmembers are pure pixels. Most of the autonomous hyperspectral unmixing algorithms focus on solving some of the unmixing problems and have difficulty achieving fully autonomous hyperspectral unmixing (FAHU). In this article, to overcome this shortcoming, a fully autonomous hyperspectral unmixing method called FAHU is proposed to take advantage of the spatial information. Some of the state-of-the-art autonomous hyperspectral unmixing algorithms are used to evaluate the performance with the RMMS dataset, and the experimental results show the advantages and disadvantages of the different autonomous unmixing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LS完成签到,获得积分10
刚刚
1秒前
姜茶发布了新的文献求助10
1秒前
figure完成签到 ,获得积分10
3秒前
echo完成签到,获得积分10
3秒前
不想太多发布了新的文献求助10
4秒前
4秒前
4秒前
和谐灯泡发布了新的文献求助10
4秒前
taotao完成签到,获得积分20
5秒前
MLL完成签到 ,获得积分10
5秒前
默默的傲云完成签到,获得积分10
5秒前
小满完成签到,获得积分10
5秒前
Owen应助谨慎的安柏采纳,获得10
5秒前
5秒前
朴实海亦完成签到,获得积分10
5秒前
Ada完成签到 ,获得积分10
5秒前
燕子完成签到,获得积分10
6秒前
青年才俊完成签到,获得积分10
6秒前
MF完成签到,获得积分10
6秒前
dagongren完成签到,获得积分10
6秒前
兔酱发布了新的文献求助10
7秒前
7秒前
7秒前
馥芮白完成签到,获得积分10
7秒前
czzlancer完成签到,获得积分10
9秒前
Whiaper发布了新的文献求助10
9秒前
儒雅完成签到 ,获得积分10
10秒前
10秒前
gaowei完成签到,获得积分10
10秒前
英勇的飞凤完成签到,获得积分20
11秒前
11秒前
温柔的尔芙完成签到,获得积分20
12秒前
12秒前
hhy完成签到,获得积分10
12秒前
longmad完成签到,获得积分10
12秒前
和谐的醉山完成签到,获得积分0
12秒前
噗噗完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735