Realistic Mixing Miniature Scene Hyperspectral Unmixing: From Benchmark Datasets to Autonomous Unmixing

高光谱成像 计算机科学 像素 人工智能 模式识别(心理学) 水准点(测量) 基本事实 遥感 图像分辨率 计算机视觉 地理 大地测量学
作者
Chunyang Cui,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3236677
摘要

Mixed pixels that contain more than one material type are common in mid/low spatial resolution remote sensing imagery. Hyperspectral unmixing is aimed at decomposing the mixed pixels into endmembers and abundances. However, there are few datasets that are suitable for quantitatively evaluating unmixing accuracies, and the ground-truth abundances of the existing datasets are often generated in an approximate way. To address the lack of real unmixing datasets for quantitative evaluation, we built the realistic mixing miniature scenes (RMMS) dataset, which can be used to quantitatively evaluate the unmixing accuracy of different algorithms. The RMMS dataset consists of a simple mixture scene with homogeneous flat materials and a complex mixture scene with 3-D structural features. The features of the RMMS dataset also take point, line, and polygon characteristics into consideration, and the spectral similarity of the materials increases the challenge of the spectral unmixing. In the RMMS dataset, due to the multiscale observation characteristics of the spatiotemporal scanning modality, it can avoid the registration error between RGB and hyperspectral data, and it can ensure that the endmembers are pure pixels. Most of the autonomous hyperspectral unmixing algorithms focus on solving some of the unmixing problems and have difficulty achieving fully autonomous hyperspectral unmixing (FAHU). In this article, to overcome this shortcoming, a fully autonomous hyperspectral unmixing method called FAHU is proposed to take advantage of the spatial information. Some of the state-of-the-art autonomous hyperspectral unmixing algorithms are used to evaluate the performance with the RMMS dataset, and the experimental results show the advantages and disadvantages of the different autonomous unmixing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助vchen0621采纳,获得10
刚刚
2秒前
Michael完成签到,获得积分10
2秒前
丘比特应助bjb采纳,获得10
3秒前
李爱国应助jie采纳,获得10
4秒前
李kh完成签到,获得积分10
4秒前
可爱的函函应助happyyoyo采纳,获得10
5秒前
5秒前
Lanx完成签到,获得积分10
5秒前
积极的尔岚完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
斯文败类应助斯文的尔冬采纳,获得10
8秒前
8秒前
jqs发布了新的文献求助10
8秒前
9秒前
我是老大应助xsh采纳,获得10
11秒前
领导范儿应助xsh采纳,获得10
11秒前
我是老大应助xsh采纳,获得10
11秒前
11秒前
一兜兜糖完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
LHF发布了新的文献求助10
14秒前
赖风娇发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
香蕉觅云应助pazhao采纳,获得10
15秒前
16秒前
zheng发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
达不溜发布了新的文献求助10
18秒前
19秒前
吴裕玲完成签到,获得积分20
19秒前
jie发布了新的文献求助10
19秒前
supreme辉完成签到,获得积分10
20秒前
sci发布了新的文献求助10
21秒前
梨儿萌死完成签到,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752480
求助须知:如何正确求助?哪些是违规求助? 5474728
关于积分的说明 15373918
捐赠科研通 4891411
什么是DOI,文献DOI怎么找? 2630441
邀请新用户注册赠送积分活动 1578611
关于科研通互助平台的介绍 1534586