亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Realistic Mixing Miniature Scene Hyperspectral Unmixing: From Benchmark Datasets to Autonomous Unmixing

高光谱成像 计算机科学 像素 人工智能 模式识别(心理学) 水准点(测量) 基本事实 遥感 图像分辨率 计算机视觉 地理 大地测量学
作者
Chunyang Cui,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3236677
摘要

Mixed pixels that contain more than one material type are common in mid/low spatial resolution remote sensing imagery. Hyperspectral unmixing is aimed at decomposing the mixed pixels into endmembers and abundances. However, there are few datasets that are suitable for quantitatively evaluating unmixing accuracies, and the ground-truth abundances of the existing datasets are often generated in an approximate way. To address the lack of real unmixing datasets for quantitative evaluation, we built the realistic mixing miniature scenes (RMMS) dataset, which can be used to quantitatively evaluate the unmixing accuracy of different algorithms. The RMMS dataset consists of a simple mixture scene with homogeneous flat materials and a complex mixture scene with 3-D structural features. The features of the RMMS dataset also take point, line, and polygon characteristics into consideration, and the spectral similarity of the materials increases the challenge of the spectral unmixing. In the RMMS dataset, due to the multiscale observation characteristics of the spatiotemporal scanning modality, it can avoid the registration error between RGB and hyperspectral data, and it can ensure that the endmembers are pure pixels. Most of the autonomous hyperspectral unmixing algorithms focus on solving some of the unmixing problems and have difficulty achieving fully autonomous hyperspectral unmixing (FAHU). In this article, to overcome this shortcoming, a fully autonomous hyperspectral unmixing method called FAHU is proposed to take advantage of the spatial information. Some of the state-of-the-art autonomous hyperspectral unmixing algorithms are used to evaluate the performance with the RMMS dataset, and the experimental results show the advantages and disadvantages of the different autonomous unmixing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang完成签到 ,获得积分10
5秒前
趁微风不躁完成签到,获得积分10
55秒前
大力不评发布了新的文献求助10
59秒前
TXZ06完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助spark采纳,获得10
1分钟前
大力不评完成签到,获得积分20
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
haoqingyun发布了新的文献求助10
2分钟前
hanwei_mei发布了新的文献求助10
2分钟前
2分钟前
2分钟前
hanwei_mei完成签到,获得积分10
3分钟前
haoqingyun发布了新的文献求助10
3分钟前
CodeCraft应助腼腆的月亮采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
3分钟前
浮游应助wuran采纳,获得10
3分钟前
haoqingyun完成签到,获得积分10
3分钟前
搔扒完成签到,获得积分10
4分钟前
大熊完成签到 ,获得积分10
4分钟前
sy完成签到 ,获得积分10
4分钟前
情怀应助安详的面包采纳,获得10
4分钟前
qqq完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
远方完成签到,获得积分10
5分钟前
浮游应助wuran采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
7分钟前
佳佳发布了新的文献求助10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650990
求助须知:如何正确求助?哪些是违规求助? 4782616
关于积分的说明 15052919
捐赠科研通 4809775
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585