Design a Novel Method to Improve Positioning Accuracy of UWB System in Harsh Underground Environments

计算机科学 实时计算
作者
Bo Cao,Shibo Wang,Wanli Liu,Chunxia Jiang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:71 (12): 16751-16760 被引量:5
标识
DOI:10.1109/tie.2024.3383033
摘要

Accurate positioning is a necessary prerequisite for the realization of intelligent and autonomous mining. Although most research efforts have focused on localization techniques, these methods are incapable of producing a sufficiently high and reliable location estimation accuracy in harsh underground coal mine environments. To enhance the positioning accuracy of the target node (TN), this article proposes an innovative method denoted as MCVBUKF-RTS-ALO by integrating the maximum correntropy unscented Kalman filter (MCUKF), variational Bayesian (VB) methodology, Rauch–Tung–Striebel (RTS) smoother, and ant lion optimizer (ALO) algorithm. First, the MCVBUKF-RTS method is proposed, taking into account complex measurement noise and abnormal measurement data to enhance the ranging accuracy due to the existence of inevitable uncertainties during practical implementation. In particular, the MCVBUKF is performed during the application of the RTS smoother for the forward filtering and backward smoothing to alleviate the influence of corrupted measurements. Following this, the robust weight total least squares is adopted to estimate the TN's location, and the ALO is subsequently performed to further optimize the estimated results. An experimental investigation was implemented to validate the practicability and effectiveness of the designed method using the ultra-wideband (UWB) system. The experimental results demonstrate that the designed MCVBUKF-RTS-ALO method can greatly improve the positioning accuracy of the UWB system and substantially outperforms the other state-of-the-art-methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈啦啦完成签到,获得积分10
2秒前
门牙完成签到,获得积分10
4秒前
St发布了新的文献求助10
5秒前
dajiejie完成签到 ,获得积分10
5秒前
科目三应助fogsea采纳,获得10
5秒前
宪哥他哥发布了新的文献求助10
5秒前
Lucas应助陈琳采纳,获得10
6秒前
6秒前
酸酸乳完成签到 ,获得积分10
6秒前
北枳完成签到 ,获得积分0
8秒前
打打应助亮子纠缠采纳,获得10
9秒前
友好冷风完成签到,获得积分10
10秒前
好久不见发布了新的文献求助10
10秒前
完美世界应助酷炫觅松采纳,获得10
12秒前
wsd发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
无极微光应助小狒狒采纳,获得20
15秒前
15秒前
St完成签到,获得积分10
16秒前
aaa发布了新的文献求助10
16秒前
陈琳发布了新的文献求助10
17秒前
沚沐发布了新的文献求助10
17秒前
17秒前
pickme发布了新的文献求助10
17秒前
李健应助香菜味钠片采纳,获得10
18秒前
19秒前
R18686226306发布了新的文献求助10
19秒前
Hello应助王贤平采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
多多发布了新的文献求助10
22秒前
浮游应助march采纳,获得10
22秒前
22秒前
ttevi发布了新的文献求助10
22秒前
只争朝夕完成签到,获得积分10
22秒前
甜甜戎发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109