State estimation of buses: A hybrid algorithm of deep neural network and unscented Kalman filter considering mass identification

卡尔曼滤波器 鉴定(生物学) 人工神经网络 算法 扩展卡尔曼滤波器 计算机科学 移动视界估计 国家(计算机科学) 无味变换 控制理论(社会学) 人工智能 植物 生物 控制(管理)
作者
Bing Yang,Rui Fu,Qinyu Sun,Siyang Jiang,Chang Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:213: 111368-111368 被引量:1
标识
DOI:10.1016/j.ymssp.2024.111368
摘要

Accurately obtaining vehicle state parameters is a crucial prerequisite for active safety control. However, key stability parameters of buses, such as sideslip angle and roll angle, are difficult to measure directly. Moreover, changes in the bus mass during the driving route can impact the vehicle state. To tackle these challenges, we identify the bus mass before state estimation, and propose a hybrid state estimation algorithm based on deep neural network (DNN) and unscented Kalman filter (UKF). First, the mass is identified using the recursive least squares (RLS) method based on longitudinal dynamics at each start of bus, and the yaw and roll moment of inertia are adaptively adjusted based on the identified mass. Second, a composite DNN combining the convolutional neural network (CNN), gated recurrent unit (GRU), and attention mechanism is designed to estimate sideslip and roll angles. As for the training dataset, it is acquired from different maneuvers simulated by TruckSim. Third, a UKF estimator is established based on 4-degree of freedom (DOF) vehicle dynamics model and magic tire formula, and the estimated values of DNN are inserted into UKF estimator as virtual observations. Finally, the proposed hybrid algorithm is validated through simulation maneuvers and real driving maneuvers based on MATLAB/Simulink and TruckSim software. The comparative results demonstrate that the proposed algorithm outperforms individual DNN estimation and UKF estimation, enhancing both estimation accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕青应助Echodeng采纳,获得10
1秒前
拓扑超导相变完成签到,获得积分10
2秒前
3秒前
3秒前
没有银发布了新的文献求助30
3秒前
涂楚捷发布了新的文献求助10
3秒前
香蕉觅云应助白露为霜采纳,获得10
4秒前
4秒前
cs发布了新的文献求助10
5秒前
桐桐应助芒果好高采纳,获得10
5秒前
6秒前
6秒前
璐璐发布了新的文献求助10
7秒前
Saunak完成签到,获得积分10
7秒前
8秒前
8秒前
Xzzp发布了新的文献求助10
8秒前
sir发布了新的文献求助10
9秒前
9秒前
14秒前
万能图书馆应助sir采纳,获得10
16秒前
李健的小迷弟应助宸1采纳,获得10
16秒前
123完成签到 ,获得积分10
16秒前
从容芮应助风中夜天采纳,获得10
17秒前
17秒前
思源应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
18秒前
华仔应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
jj发布了新的文献求助10
19秒前
NexusExplorer应助awu采纳,获得10
21秒前
21秒前
英俊的铭应助blk采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376