State estimation of buses: A hybrid algorithm of deep neural network and unscented Kalman filter considering mass identification

卡尔曼滤波器 鉴定(生物学) 人工神经网络 算法 扩展卡尔曼滤波器 计算机科学 移动视界估计 国家(计算机科学) 无味变换 控制理论(社会学) 人工智能 植物 控制(管理) 生物
作者
Bing Yang,Rui Fu,Qinyu Sun,Siyang Jiang,Chang Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:213: 111368-111368 被引量:1
标识
DOI:10.1016/j.ymssp.2024.111368
摘要

Accurately obtaining vehicle state parameters is a crucial prerequisite for active safety control. However, key stability parameters of buses, such as sideslip angle and roll angle, are difficult to measure directly. Moreover, changes in the bus mass during the driving route can impact the vehicle state. To tackle these challenges, we identify the bus mass before state estimation, and propose a hybrid state estimation algorithm based on deep neural network (DNN) and unscented Kalman filter (UKF). First, the mass is identified using the recursive least squares (RLS) method based on longitudinal dynamics at each start of bus, and the yaw and roll moment of inertia are adaptively adjusted based on the identified mass. Second, a composite DNN combining the convolutional neural network (CNN), gated recurrent unit (GRU), and attention mechanism is designed to estimate sideslip and roll angles. As for the training dataset, it is acquired from different maneuvers simulated by TruckSim. Third, a UKF estimator is established based on 4-degree of freedom (DOF) vehicle dynamics model and magic tire formula, and the estimated values of DNN are inserted into UKF estimator as virtual observations. Finally, the proposed hybrid algorithm is validated through simulation maneuvers and real driving maneuvers based on MATLAB/Simulink and TruckSim software. The comparative results demonstrate that the proposed algorithm outperforms individual DNN estimation and UKF estimation, enhancing both estimation accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
刚刚
刚刚
1秒前
苏诗兰发布了新的文献求助10
2秒前
2秒前
cui完成签到,获得积分10
3秒前
3秒前
13发布了新的文献求助10
4秒前
11完成签到,获得积分10
4秒前
4秒前
chwjx完成签到 ,获得积分10
4秒前
猪猪hero发布了新的文献求助20
4秒前
honey完成签到,获得积分10
5秒前
北陆小猫发布了新的文献求助10
6秒前
BK_发布了新的文献求助10
6秒前
7秒前
威威发布了新的文献求助10
8秒前
9秒前
隐形曼青应助果果采纳,获得10
9秒前
10秒前
领导范儿应助风趣的傲之采纳,获得10
10秒前
11秒前
zzhongtian123完成签到,获得积分10
11秒前
熊四是誰完成签到,获得积分10
11秒前
Owen应助研究生采纳,获得10
11秒前
狂野世立完成签到,获得积分10
12秒前
13秒前
Ye完成签到,获得积分10
14秒前
伊戈达拉一个大拉完成签到,获得积分10
14秒前
迷路的绿藻头完成签到 ,获得积分10
15秒前
15秒前
研友_LBaaX8发布了新的文献求助10
17秒前
不明生物完成签到,获得积分10
17秒前
20秒前
11关注了科研通微信公众号
21秒前
22秒前
橙子发布了新的文献求助20
23秒前
wanna完成签到,获得积分10
23秒前
赘婿应助研究生采纳,获得10
23秒前
畅快新之发布了新的文献求助20
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014