State estimation of buses: A hybrid algorithm of deep neural network and unscented Kalman filter considering mass identification

卡尔曼滤波器 鉴定(生物学) 人工神经网络 算法 扩展卡尔曼滤波器 计算机科学 移动视界估计 国家(计算机科学) 无味变换 控制理论(社会学) 人工智能 植物 控制(管理) 生物
作者
Bing Yang,Rui Fu,Qinyu Sun,Siyang Jiang,Chang Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:213: 111368-111368 被引量:1
标识
DOI:10.1016/j.ymssp.2024.111368
摘要

Accurately obtaining vehicle state parameters is a crucial prerequisite for active safety control. However, key stability parameters of buses, such as sideslip angle and roll angle, are difficult to measure directly. Moreover, changes in the bus mass during the driving route can impact the vehicle state. To tackle these challenges, we identify the bus mass before state estimation, and propose a hybrid state estimation algorithm based on deep neural network (DNN) and unscented Kalman filter (UKF). First, the mass is identified using the recursive least squares (RLS) method based on longitudinal dynamics at each start of bus, and the yaw and roll moment of inertia are adaptively adjusted based on the identified mass. Second, a composite DNN combining the convolutional neural network (CNN), gated recurrent unit (GRU), and attention mechanism is designed to estimate sideslip and roll angles. As for the training dataset, it is acquired from different maneuvers simulated by TruckSim. Third, a UKF estimator is established based on 4-degree of freedom (DOF) vehicle dynamics model and magic tire formula, and the estimated values of DNN are inserted into UKF estimator as virtual observations. Finally, the proposed hybrid algorithm is validated through simulation maneuvers and real driving maneuvers based on MATLAB/Simulink and TruckSim software. The comparative results demonstrate that the proposed algorithm outperforms individual DNN estimation and UKF estimation, enhancing both estimation accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
lmy完成签到 ,获得积分10
刚刚
平常的可乐完成签到 ,获得积分10
1秒前
1秒前
邵初蓝完成签到,获得积分10
2秒前
卡卡发布了新的文献求助10
3秒前
岳粤完成签到,获得积分10
3秒前
4秒前
大神发布了新的文献求助10
4秒前
4秒前
4秒前
xjtu发布了新的文献求助10
5秒前
雾见春发布了新的文献求助30
5秒前
姚文超完成签到,获得积分20
6秒前
科研小菜发布了新的文献求助10
6秒前
岳粤发布了新的文献求助10
6秒前
6秒前
6秒前
yijiubingshi发布了新的文献求助10
7秒前
7秒前
wang完成签到,获得积分10
8秒前
果酱君完成签到,获得积分10
8秒前
8秒前
9秒前
zzz发布了新的文献求助10
9秒前
kingwill应助江南烟雨如笙采纳,获得20
10秒前
10秒前
zrk发布了新的文献求助10
10秒前
小毕可乐完成签到,获得积分10
11秒前
zc19891130完成签到,获得积分10
11秒前
烟花应助晗仔采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
小蘑菇应助zhui采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794