Retinal detachment (RD) is a vision-threatening disorder of significant severity. Individuals with high myopia (HM) face a 2 to 6 times higher risk of developing RD compared to non-myopes. The timely identification of high myopia-related retinal detachment (HMRD) is crucial for effective treatment and prevention of additional vision impairment. Consequently, our objective was to streamline and validate a machine-learning model based on clinical laboratory omics (clinlabomics) for the early detection of RD in HM patients.