Artificial Intelligence Predicts Hospitalization for Acute Heart Failure Exacerbation in Patients Undergoing Myocardial Perfusion Imaging

医学 恶化 射血分数 心肌灌注成像 接收机工作特性 队列 内科学 心脏病学 心力衰竭 灌注 灌注扫描 放射科 核医学
作者
Attila Fehér,Bryan Bednarski,Robert J.H. Miller,Aakash Shanbhag,Mark Lemley,Leonidas Miras,Albert J. Sinusas,Edward J. Miller,Piotr J. Slomka
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine]
卷期号:65 (5): 768-774
标识
DOI:10.2967/jnumed.123.266761
摘要

Heart failure (HF) is a leading cause of morbidity and mortality in the United States and worldwide, with a high associated economic burden. This study aimed to assess whether artificial intelligence models incorporating clinical, stress test, and imaging parameters could predict hospitalization for acute HF exacerbation in patients undergoing SPECT/CT myocardial perfusion imaging. Methods: The HF risk prediction model was developed using data from 4,766 patients who underwent SPECT/CT at a single center (internal cohort). The algorithm used clinical risk factors, stress variables, SPECT imaging parameters, and fully automated deep learning–generated calcium scores from attenuation CT scans. The model was trained and validated using repeated hold-out (10-fold cross-validation). External validation was conducted on a separate cohort of 2,912 patients. During a median follow-up of 1.9 y, 297 patients (6%) in the internal cohort were admitted for HF exacerbation. Results: The final model demonstrated a higher area under the receiver-operating-characteristic curve (0.87 ± 0.03) for predicting HF admissions than did stress left ventricular ejection fraction (0.73 ± 0.05, P < 0.0001) or a model developed using only clinical parameters (0.81 ± 0.04, P < 0.0001). These findings were confirmed in the external validation cohort (area under the receiver-operating-characteristic curve: 0.80 ± 0.04 for final model, 0.70 ± 0.06 for stress left ventricular ejection fraction, 0.72 ± 0.05 for clinical model; P < 0.001 for all). Conclusion: Integrating SPECT myocardial perfusion imaging into an artificial intelligence–based risk assessment algorithm improves the prediction of HF hospitalization. The proposed method could enable early interventions to prevent HF hospitalizations, leading to improved patient care and better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蒋发布了新的文献求助10
刚刚
1秒前
2秒前
NJUSTJAY发布了新的文献求助10
6秒前
微醺钓青鱼完成签到 ,获得积分10
7秒前
wanci应助大猫喵喵喵采纳,获得10
7秒前
无辜箴完成签到,获得积分10
8秒前
嘎嘎坤完成签到 ,获得积分10
11秒前
人言可畏完成签到 ,获得积分10
14秒前
14秒前
14秒前
小马甲应助wwx采纳,获得10
14秒前
15秒前
15秒前
XRRA完成签到,获得积分20
16秒前
思源应助草履虫采纳,获得10
16秒前
星辰大海应助无敌小宽哥采纳,获得10
17秒前
18秒前
19秒前
19秒前
大猫喵喵喵完成签到,获得积分10
19秒前
carryxu发布了新的文献求助10
20秒前
朴素怀寒发布了新的文献求助10
22秒前
Jasper完成签到,获得积分10
22秒前
22秒前
wwx完成签到,获得积分10
22秒前
23秒前
24秒前
李爱国应助聪慧远山采纳,获得10
25秒前
27秒前
大大怪发布了新的文献求助10
27秒前
嗯哼应助Ethan采纳,获得20
27秒前
hilda发布了新的文献求助10
27秒前
疯狂的迪子完成签到 ,获得积分10
28秒前
28秒前
迷今完成签到,获得积分10
30秒前
曲书文发布了新的文献求助10
33秒前
34秒前
万能图书馆应助nenoaowu采纳,获得20
35秒前
小马甲应助大大怪采纳,获得10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154482
求助须知:如何正确求助?哪些是违规求助? 2805389
关于积分的说明 7864629
捐赠科研通 2463580
什么是DOI,文献DOI怎么找? 1311412
科研通“疑难数据库(出版商)”最低求助积分说明 629574
版权声明 601821