Artificial Intelligence Predicts Hospitalization for Acute Heart Failure Exacerbation in Patients Undergoing Myocardial Perfusion Imaging

医学 恶化 射血分数 心肌灌注成像 接收机工作特性 队列 内科学 心脏病学 心力衰竭 灌注 灌注扫描 放射科 核医学
作者
Attila Fehér,Bryan Bednarski,Robert J.H. Miller,Aakash Shanbhag,Mark Lemley,Leonidas Miras,Albert J. Sinusas,Edward J. Miller,Piotr J. Slomka
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine]
卷期号:65 (5): 768-774
标识
DOI:10.2967/jnumed.123.266761
摘要

Heart failure (HF) is a leading cause of morbidity and mortality in the United States and worldwide, with a high associated economic burden. This study aimed to assess whether artificial intelligence models incorporating clinical, stress test, and imaging parameters could predict hospitalization for acute HF exacerbation in patients undergoing SPECT/CT myocardial perfusion imaging. Methods: The HF risk prediction model was developed using data from 4,766 patients who underwent SPECT/CT at a single center (internal cohort). The algorithm used clinical risk factors, stress variables, SPECT imaging parameters, and fully automated deep learning–generated calcium scores from attenuation CT scans. The model was trained and validated using repeated hold-out (10-fold cross-validation). External validation was conducted on a separate cohort of 2,912 patients. During a median follow-up of 1.9 y, 297 patients (6%) in the internal cohort were admitted for HF exacerbation. Results: The final model demonstrated a higher area under the receiver-operating-characteristic curve (0.87 ± 0.03) for predicting HF admissions than did stress left ventricular ejection fraction (0.73 ± 0.05, P < 0.0001) or a model developed using only clinical parameters (0.81 ± 0.04, P < 0.0001). These findings were confirmed in the external validation cohort (area under the receiver-operating-characteristic curve: 0.80 ± 0.04 for final model, 0.70 ± 0.06 for stress left ventricular ejection fraction, 0.72 ± 0.05 for clinical model; P < 0.001 for all). Conclusion: Integrating SPECT myocardial perfusion imaging into an artificial intelligence–based risk assessment algorithm improves the prediction of HF hospitalization. The proposed method could enable early interventions to prevent HF hospitalizations, leading to improved patient care and better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
lan完成签到 ,获得积分10
3秒前
愉快之槐完成签到,获得积分10
4秒前
4秒前
123发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
丘比特应助Angelawin采纳,获得10
6秒前
洋洋羊发布了新的文献求助10
7秒前
LW发布了新的文献求助10
7秒前
9秒前
10秒前
羊一完成签到 ,获得积分10
11秒前
12秒前
henry完成签到 ,获得积分10
13秒前
lgl完成签到,获得积分10
13秒前
科目三应助Gryphon采纳,获得10
13秒前
14秒前
香蕉新筠完成签到,获得积分10
14秒前
15秒前
17秒前
18秒前
醒醒发布了新的文献求助10
18秒前
XiangLuo完成签到,获得积分10
18秒前
李文霄发布了新的文献求助10
19秒前
20秒前
醉熏的以蓝完成签到 ,获得积分10
21秒前
21秒前
22秒前
LW完成签到,获得积分20
23秒前
25秒前
lucky完成签到,获得积分10
26秒前
PurpleSakura发布了新的文献求助10
27秒前
nino发布了新的文献求助10
28秒前
殷一丹完成签到 ,获得积分10
28秒前
酷波er应助Rrr采纳,获得10
28秒前
可爱的函函应助LW采纳,获得10
30秒前
HP完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416931
求助须知:如何正确求助?哪些是违规求助? 4532992
关于积分的说明 14137696
捐赠科研通 4449052
什么是DOI,文献DOI怎么找? 2440569
邀请新用户注册赠送积分活动 1432413
关于科研通互助平台的介绍 1409818