Artificial Intelligence Predicts Hospitalization for Acute Heart Failure Exacerbation in Patients Undergoing Myocardial Perfusion Imaging

医学 恶化 射血分数 心肌灌注成像 接收机工作特性 队列 内科学 心脏病学 心力衰竭 灌注 灌注扫描 放射科 核医学
作者
Attila Fehér,Bryan Bednarski,Robert J.H. Miller,Aakash Shanbhag,Mark Lemley,Leonidas Miras,Albert J. Sinusas,Edward J. Miller,Piotr J. Slomka
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine and Molecular Imaging]
卷期号:65 (5): 768-774
标识
DOI:10.2967/jnumed.123.266761
摘要

Heart failure (HF) is a leading cause of morbidity and mortality in the United States and worldwide, with a high associated economic burden. This study aimed to assess whether artificial intelligence models incorporating clinical, stress test, and imaging parameters could predict hospitalization for acute HF exacerbation in patients undergoing SPECT/CT myocardial perfusion imaging. Methods: The HF risk prediction model was developed using data from 4,766 patients who underwent SPECT/CT at a single center (internal cohort). The algorithm used clinical risk factors, stress variables, SPECT imaging parameters, and fully automated deep learning–generated calcium scores from attenuation CT scans. The model was trained and validated using repeated hold-out (10-fold cross-validation). External validation was conducted on a separate cohort of 2,912 patients. During a median follow-up of 1.9 y, 297 patients (6%) in the internal cohort were admitted for HF exacerbation. Results: The final model demonstrated a higher area under the receiver-operating-characteristic curve (0.87 ± 0.03) for predicting HF admissions than did stress left ventricular ejection fraction (0.73 ± 0.05, P < 0.0001) or a model developed using only clinical parameters (0.81 ± 0.04, P < 0.0001). These findings were confirmed in the external validation cohort (area under the receiver-operating-characteristic curve: 0.80 ± 0.04 for final model, 0.70 ± 0.06 for stress left ventricular ejection fraction, 0.72 ± 0.05 for clinical model; P < 0.001 for all). Conclusion: Integrating SPECT myocardial perfusion imaging into an artificial intelligence–based risk assessment algorithm improves the prediction of HF hospitalization. The proposed method could enable early interventions to prevent HF hospitalizations, leading to improved patient care and better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助GEeZiii采纳,获得10
刚刚
不吃了完成签到 ,获得积分0
刚刚
WuchangI发布了新的文献求助10
1秒前
果果发布了新的文献求助10
2秒前
2秒前
满三江完成签到,获得积分10
3秒前
gudujian870928完成签到,获得积分10
4秒前
5秒前
SYLH应助李2003采纳,获得10
6秒前
rookieLi应助boshi采纳,获得10
6秒前
Ula发布了新的文献求助10
6秒前
方方完成签到,获得积分10
6秒前
Ava应助llj采纳,获得10
7秒前
123发布了新的文献求助10
7秒前
平常的狗应助林士采纳,获得10
8秒前
8秒前
芝麻完成签到,获得积分10
8秒前
小兵发布了新的文献求助10
8秒前
9秒前
9秒前
balabala发布了新的文献求助10
9秒前
9秒前
091完成签到 ,获得积分10
9秒前
苹果蜗牛发布了新的文献求助10
10秒前
科研小垃圾完成签到,获得积分10
10秒前
12秒前
12秒前
皮划艇完成签到,获得积分20
12秒前
12秒前
酷波er应助苹果采纳,获得10
12秒前
方方发布了新的文献求助10
13秒前
13秒前
研友_VZG7GZ应助你可真行采纳,获得10
14秒前
花花发布了新的文献求助10
14秒前
SYLH应助XFaning采纳,获得10
14秒前
Lucas应助芝麻采纳,获得10
15秒前
苗条的凝雁完成签到,获得积分10
15秒前
小樊同学发布了新的文献求助10
15秒前
yihuifa完成签到 ,获得积分10
15秒前
爱思考的小笨笨完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650