Artificial Intelligence Predicts Hospitalization for Acute Heart Failure Exacerbation in Patients Undergoing Myocardial Perfusion Imaging

医学 恶化 射血分数 心肌灌注成像 接收机工作特性 队列 内科学 心脏病学 心力衰竭 灌注 灌注扫描 放射科 核医学
作者
Attila Fehér,Bryan Bednarski,Robert J.H. Miller,Aakash Shanbhag,Mark Lemley,Leonidas Miras,Albert J. Sinusas,Edward J. Miller,Piotr J. Slomka
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine and Molecular Imaging]
卷期号:65 (5): 768-774
标识
DOI:10.2967/jnumed.123.266761
摘要

Heart failure (HF) is a leading cause of morbidity and mortality in the United States and worldwide, with a high associated economic burden. This study aimed to assess whether artificial intelligence models incorporating clinical, stress test, and imaging parameters could predict hospitalization for acute HF exacerbation in patients undergoing SPECT/CT myocardial perfusion imaging. Methods: The HF risk prediction model was developed using data from 4,766 patients who underwent SPECT/CT at a single center (internal cohort). The algorithm used clinical risk factors, stress variables, SPECT imaging parameters, and fully automated deep learning–generated calcium scores from attenuation CT scans. The model was trained and validated using repeated hold-out (10-fold cross-validation). External validation was conducted on a separate cohort of 2,912 patients. During a median follow-up of 1.9 y, 297 patients (6%) in the internal cohort were admitted for HF exacerbation. Results: The final model demonstrated a higher area under the receiver-operating-characteristic curve (0.87 ± 0.03) for predicting HF admissions than did stress left ventricular ejection fraction (0.73 ± 0.05, P < 0.0001) or a model developed using only clinical parameters (0.81 ± 0.04, P < 0.0001). These findings were confirmed in the external validation cohort (area under the receiver-operating-characteristic curve: 0.80 ± 0.04 for final model, 0.70 ± 0.06 for stress left ventricular ejection fraction, 0.72 ± 0.05 for clinical model; P < 0.001 for all). Conclusion: Integrating SPECT myocardial perfusion imaging into an artificial intelligence–based risk assessment algorithm improves the prediction of HF hospitalization. The proposed method could enable early interventions to prevent HF hospitalizations, leading to improved patient care and better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫皮皮虾完成签到,获得积分10
刚刚
qq发布了新的文献求助10
1秒前
1秒前
大盘菜发布了新的文献求助10
1秒前
zhonglv7应助只只采纳,获得10
1秒前
深情安青应助ad采纳,获得10
1秒前
宁阿霜发布了新的文献求助20
1秒前
小超发布了新的文献求助10
1秒前
英吉利25发布了新的文献求助10
1秒前
小艾完成签到 ,获得积分10
1秒前
杨旸发布了新的文献求助30
1秒前
ding应助坚强的听枫采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
天天快乐应助夏至未至采纳,获得10
3秒前
Gzh_NJ发布了新的文献求助10
3秒前
hy完成签到,获得积分10
3秒前
4秒前
古哥完成签到,获得积分10
4秒前
汉堡包应助归仔采纳,获得10
4秒前
乐观短靴发布了新的文献求助10
5秒前
5秒前
DW123完成签到,获得积分10
5秒前
浮游应助qingchidue采纳,获得10
5秒前
汉堡包应助明媚采纳,获得10
6秒前
乐乐应助Janel采纳,获得30
6秒前
三叶草完成签到,获得积分10
6秒前
7秒前
at完成签到,获得积分10
7秒前
yuchen12a发布了新的文献求助10
7秒前
刘大白应助zzz采纳,获得10
7秒前
Lin发布了新的文献求助10
7秒前
8秒前
英姑应助hush采纳,获得10
8秒前
GAOBIN000发布了新的文献求助10
8秒前
香蕉觅云应助知然采纳,获得10
9秒前
9秒前
alooof发布了新的文献求助10
9秒前
emmaguo713发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885652
求助须知:如何正确求助?哪些是违规求助? 4170459
关于积分的说明 12941799
捐赠科研通 3931212
什么是DOI,文献DOI怎么找? 2156914
邀请新用户注册赠送积分活动 1175326
关于科研通互助平台的介绍 1079935