Artificial Intelligence Predicts Hospitalization for Acute Heart Failure Exacerbation in Patients Undergoing Myocardial Perfusion Imaging

医学 恶化 射血分数 心肌灌注成像 接收机工作特性 队列 内科学 心脏病学 心力衰竭 灌注 灌注扫描 放射科 核医学
作者
Attila Fehér,Bryan Bednarski,Robert J.H. Miller,Aakash Shanbhag,Mark Lemley,Leonidas Miras,Albert J. Sinusas,Edward J. Miller,Piotr J. Slomka
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine and Molecular Imaging]
卷期号:65 (5): 768-774
标识
DOI:10.2967/jnumed.123.266761
摘要

Heart failure (HF) is a leading cause of morbidity and mortality in the United States and worldwide, with a high associated economic burden. This study aimed to assess whether artificial intelligence models incorporating clinical, stress test, and imaging parameters could predict hospitalization for acute HF exacerbation in patients undergoing SPECT/CT myocardial perfusion imaging. Methods: The HF risk prediction model was developed using data from 4,766 patients who underwent SPECT/CT at a single center (internal cohort). The algorithm used clinical risk factors, stress variables, SPECT imaging parameters, and fully automated deep learning–generated calcium scores from attenuation CT scans. The model was trained and validated using repeated hold-out (10-fold cross-validation). External validation was conducted on a separate cohort of 2,912 patients. During a median follow-up of 1.9 y, 297 patients (6%) in the internal cohort were admitted for HF exacerbation. Results: The final model demonstrated a higher area under the receiver-operating-characteristic curve (0.87 ± 0.03) for predicting HF admissions than did stress left ventricular ejection fraction (0.73 ± 0.05, P < 0.0001) or a model developed using only clinical parameters (0.81 ± 0.04, P < 0.0001). These findings were confirmed in the external validation cohort (area under the receiver-operating-characteristic curve: 0.80 ± 0.04 for final model, 0.70 ± 0.06 for stress left ventricular ejection fraction, 0.72 ± 0.05 for clinical model; P < 0.001 for all). Conclusion: Integrating SPECT myocardial perfusion imaging into an artificial intelligence–based risk assessment algorithm improves the prediction of HF hospitalization. The proposed method could enable early interventions to prevent HF hospitalizations, leading to improved patient care and better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜曲应助xhd183采纳,获得10
刚刚
刚刚
科目三应助一定长采纳,获得10
1秒前
1秒前
Epiphany完成签到,获得积分10
1秒前
1秒前
南山发布了新的文献求助10
2秒前
星辰大海应助ni采纳,获得10
2秒前
3秒前
3秒前
Orange应助Alarack采纳,获得10
3秒前
咕噜噜发布了新的文献求助10
4秒前
爱睡午觉发布了新的文献求助10
4秒前
4秒前
小青椒应助冉柒采纳,获得20
4秒前
Yuanbh完成签到,获得积分10
4秒前
5秒前
Xie完成签到,获得积分10
5秒前
6秒前
苏杰发布了新的文献求助10
6秒前
努力仔完成签到,获得积分20
6秒前
7秒前
7秒前
浮游应助婉妤采纳,获得10
7秒前
芥子完成签到,获得积分20
8秒前
小蘑菇应助viauue9采纳,获得10
8秒前
十三发布了新的文献求助10
9秒前
9秒前
汉堡包应助小刘爱科研采纳,获得10
9秒前
十一发布了新的文献求助10
9秒前
在水一方应助SIREN采纳,获得10
9秒前
9秒前
Xie发布了新的文献求助10
11秒前
NexusExplorer应助yanning采纳,获得10
11秒前
科研通AI5应助wangjing采纳,获得80
11秒前
11秒前
12秒前
魏恒胜完成签到,获得积分10
13秒前
13秒前
Yuanbh发布了新的文献求助10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205627
求助须知:如何正确求助?哪些是违规求助? 4384365
关于积分的说明 13652558
捐赠科研通 4242452
什么是DOI,文献DOI怎么找? 2327465
邀请新用户注册赠送积分活动 1325260
关于科研通互助平台的介绍 1277407