材料科学
微观结构
极限抗拉强度
奥氏体
压痕硬度
等轴晶
合金
冶金
铁氧体(磁铁)
体积分数
制作
复合材料
医学
替代医学
病理
作者
Javad Mohammadi,Iman Dashtgerd,Sola An,Billythong Trinh,Amir Mostafaei,A.R. Riahi
标识
DOI:10.1016/j.mtcomm.2024.108985
摘要
Wire arc additive manufacturing (WAAM) presents a highly promising alternative to conventional subtractive manufacturing methods to produce metallic components, particularly in the aerospace industry, where there is a demand for 17-4 precipitation-hardened (PH) stainless steel structures. This study focuses on investigating the microstructural characteristics, showing microhardness evaluations, and analyzing the tensile properties of the as-printed parts during the 17-4 PH manufacturing process at different locations and directions. The fabrication is carried out using gas metal wire arc additive manufacturing (GM-WAAM). As a result, it was found that the microstructure of the as-deposited part showed a complex configuration consisting of both finely equiaxed and coarsely formed δ-ferrite phases with vermicular and lathy morphologies. These phases were dispersed inside the martensitic matrix, while a small amount of retained austenite was also present. It was observed that the volume fraction of retained austenite (20% to 5%) and δ-ferrite phases (15.5% to 2.5%) decreased gradually from the bottom to the top of the as-deposited wall. This reduction in the fractions of these phases resulted in a progressive increase in both hardness (~37%) and ultimate tensile strength (UTS) along the building direction. This study successfully fabricates a high-strength and ductile 17-4 PH as-printed part using WAAM. The findings provide evidence supporting the feasibility of employing WAAM for producing defect-free, high-strength components on a large scale while maintaining mechanical properties similar or better than wrought alloy 17-4 PH.
科研通智能强力驱动
Strongly Powered by AbleSci AI