A review on advances in direct lithium extraction from continental brines: Ion-sieve adsorption and electrochemical methods for varied Mg/Li ratios

卤水 电化学 电渗析 吸附 萃取(化学) 材料科学 海水淡化 化学 无机化学 化学工程 色谱法 物理化学 工程类 电极 有机化学 生物化学
作者
Muhammed Rashik Mojid,Kyung Jae Lee,Jiahui You
出处
期刊:Sustainable Materials and Technologies [Elsevier BV]
卷期号:40: e00923-e00923 被引量:45
标识
DOI:10.1016/j.susmat.2024.e00923
摘要

The unbalanced supply and demand of lithium (Li) has elevated the urge for its extraction owing to the accelerated surge of battery and electric vehicle (EV) industries to meet the carbon emission reduction target. As the cost of extracting Li from brine is typically 30–50% lower than conventional hard-rock sources, this work intends to critically analyze the evolution of direct lithium extraction (DLE) methods employed in Salt Lake brine with various magnesium/lithium (Mg/Li) mass ratios whereas the lithium brine concentration (LBC) methods seek to concentrate the Li brine and eliminate contaminants without isolating the Li from the brine. Solvent extraction, precipitation, adsorption, membrane technology, and electrochemical extraction are the developed methods for Li extraction from Salt Lake brine. This review focuses on the mechanism, workflow, and comparative analysis of different methods. Moreover, recent technological advancements to handle the high Mg/Li ratio, such as modification of adsorption using ion sieves, liquid-membrane electrodialysis, and efficient multicomponent doping electrode materials, have also been discussed in depth. Although it was previously believed that solvent extraction was only feasible for low Mg/Li ratio brines, it has recently been commercially applied for high Mg/Li ratio brines in China. Precipitation is more ecology-friendly and economically favorable because of its low cost. Li extraction from brines with high Mg/Li ratios also shows promising performance using aluminate (Al) precipitants and novel Mg precipitants. However, during Mg precipitation, there is a significant loss of Li. On the other hand, in the cost-effective adsorption method, aluminium salt adsorbents are industrially used, yet low adsorption capacities limit their application. Recently, ion-exchange methods have gained popularity, as 'Li sieves' exhibit remarkable selectivity and adsorption towards Li-ions and are effective at high Mg/Li ratios. Powdered ionic sieves have low fluidity and solution permeability despite their strong affinity and adsorption capacity. Membrane technology is promising because of the benefits of improved energy consumption, simple controls, high separation rates, and the continuity of the process, yet as an emerging technology, its commercial viability is not proven. Nevertheless, a coupled "adsorption-membrane" technique has been developed and used in China for Salt Lake brines with low Li grades. Furthermore, exceptional selectivity, low energy demand, and minimal impact on the environment of electrochemical methods make Li extraction from brine promising. Being a recent technology, there is ample scope for improving electrode materials and understanding the process mechanism and cell configuration. Lastly, perspectives on the future Li extraction from brines are conferred in this article. By combining the methods (i.e., adsorption and ion exchange, membrane technology, and electrochemical process), the growth potential exists for an efficient, cost-effective, green, and sustainable extraction technology for Li from Salt Lake brine with a high Mg/Li ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定小蜜蜂完成签到,获得积分20
1秒前
张乐渝完成签到,获得积分10
2秒前
芽1发布了新的文献求助10
3秒前
3秒前
aYXZ321发布了新的文献求助10
5秒前
我是老大应助淡定小蜜蜂采纳,获得10
5秒前
LILYpig完成签到 ,获得积分10
7秒前
ice完成签到 ,获得积分10
7秒前
年轻的醉冬完成签到 ,获得积分10
8秒前
庾稀完成签到,获得积分20
8秒前
阿肖呀完成签到,获得积分10
8秒前
小熊完成签到,获得积分10
8秒前
晚意完成签到 ,获得积分10
8秒前
Xie发布了新的文献求助10
9秒前
mm完成签到,获得积分10
10秒前
虚拟的觅山完成签到,获得积分10
10秒前
Zx_1993应助认真的不评采纳,获得10
11秒前
11秒前
12秒前
12秒前
典雅又夏完成签到,获得积分10
13秒前
高高从霜完成签到 ,获得积分10
14秒前
16秒前
徐自豪完成签到 ,获得积分10
16秒前
cbq完成签到 ,获得积分10
16秒前
Ava应助孙孙孙啊采纳,获得10
16秒前
17秒前
17秒前
yongjie发布了新的文献求助10
19秒前
19秒前
yyy发布了新的文献求助20
19秒前
20秒前
20秒前
qq完成签到 ,获得积分10
21秒前
Ryan完成签到,获得积分10
21秒前
HELPMEPLZ完成签到,获得积分10
21秒前
田様应助zino采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
晨儿完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125