Functional Enhancement of Flavin-Containing Monooxygenase through Machine Learning Methodology

黄素组 单加氧酶 化学 催化作用 密度泛函理论 组合化学 计算机科学 计算化学 生物化学 细胞色素P450
作者
Takuma Matsushita,Shinji Kishimoto,Kodai Hara,Hiroshi Hashimoto,Hideki Yamaguchi,Yutaka Saitô,Kenji Watanabe
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (9): 6945-6951 被引量:3
标识
DOI:10.1021/acscatal.4c00826
摘要

Directed evolution of enzymes often fails to obtain desirable variants because of the difficulty in exploring a huge sequence space. To obtain active variants from a very limited number of variants available at the laboratory scale, machine learning (ML)-guided engineering of enzymes is becoming an attractive methodology. However, as far as we know, there is no example of an ML-guided functional modification of flavin-containing monooxygenase (FMO). FMOs are known to catalyze a variety of oxidative reactions and are involved in the biosynthesis of many natural products (NPs). Therefore, it is expected that the ML-guided functional enhancement of FMO can contribute to the efficient development of NP derivatives. In this research, we focused on p-hydroxybenzoate hydroxylase (PHBH), a model FMO, and altered only four amino acid residues around the substrate binding site. ML models were trained with a small initial library covering only approximately 0.1% of the whole sequence space, and the ML-predicted second library was enriched with active variants. The variant with the highest activity in the second library was PHBH-MWNL (V47M, W185, L199N, and L210), whose activity was more than 100 times that of the wild-type PHBH. For elucidation of the mechanism of the observed activity enhancement, the crystal structure of PHBH-MWNL in complex with 4-hydroxy-3-methyl benzoic acid was determined. In the PHBH-MWNL crystal structure, the missing water molecule WAT2 was observed due to N199 hydrogen-bonding to WAT2, indicating that the L199N mutation contributed to the observed functional improvement by stabilizing the proton relay network proposed to be important in catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助nenoaowu采纳,获得10
1秒前
安宁发布了新的文献求助10
1秒前
2秒前
啦啦啦l发布了新的文献求助10
2秒前
杨艺完成签到 ,获得积分10
3秒前
wjxcl发布了新的文献求助10
3秒前
自觉飞风发布了新的文献求助10
5秒前
搜集达人应助姚哈哈采纳,获得10
5秒前
yhtu发布了新的文献求助30
6秒前
shengsheng旭完成签到,获得积分10
6秒前
liu45kf发布了新的文献求助10
7秒前
万能图书馆应助阿郑采纳,获得10
7秒前
脑洞疼应助早早采纳,获得10
8秒前
传奇3应助RUI采纳,获得10
9秒前
英俊的铭应助曾馨慧采纳,获得10
9秒前
9秒前
10秒前
夜雪应助予秋采纳,获得10
10秒前
称心芷巧应助予秋采纳,获得10
11秒前
研友_yLpYkn完成签到,获得积分10
13秒前
情怀应助kei采纳,获得10
13秒前
烟花应助kuangsan采纳,获得10
13秒前
Triumph完成签到,获得积分10
14秒前
努力的宁发布了新的文献求助10
14秒前
14秒前
科研通AI6应助芋圆采纳,获得10
14秒前
14秒前
14秒前
乐乐应助戴帽子采纳,获得10
15秒前
俊逸若之完成签到,获得积分20
15秒前
mxl发布了新的文献求助10
15秒前
甜甜青旋完成签到,获得积分10
16秒前
16秒前
16秒前
帅气老张发布了新的文献求助10
16秒前
16秒前
16秒前
无辜日记本完成签到,获得积分10
17秒前
17秒前
浮游应助伊伊采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399809
求助须知:如何正确求助?哪些是违规求助? 4519252
关于积分的说明 14074229
捐赠科研通 4432023
什么是DOI,文献DOI怎么找? 2433408
邀请新用户注册赠送积分活动 1425754
关于科研通互助平台的介绍 1404500