Functional Enhancement of Flavin-Containing Monooxygenase through Machine Learning Methodology

黄素组 单加氧酶 化学 催化作用 密度泛函理论 组合化学 计算机科学 计算化学 生物化学 细胞色素P450
作者
Takuma Matsushita,Shinji Kishimoto,Kodai Hara,Hiroshi Hashimoto,Hideki Yamaguchi,Yutaka Saitô,Kenji Watanabe
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (9): 6945-6951 被引量:3
标识
DOI:10.1021/acscatal.4c00826
摘要

Directed evolution of enzymes often fails to obtain desirable variants because of the difficulty in exploring a huge sequence space. To obtain active variants from a very limited number of variants available at the laboratory scale, machine learning (ML)-guided engineering of enzymes is becoming an attractive methodology. However, as far as we know, there is no example of an ML-guided functional modification of flavin-containing monooxygenase (FMO). FMOs are known to catalyze a variety of oxidative reactions and are involved in the biosynthesis of many natural products (NPs). Therefore, it is expected that the ML-guided functional enhancement of FMO can contribute to the efficient development of NP derivatives. In this research, we focused on p-hydroxybenzoate hydroxylase (PHBH), a model FMO, and altered only four amino acid residues around the substrate binding site. ML models were trained with a small initial library covering only approximately 0.1% of the whole sequence space, and the ML-predicted second library was enriched with active variants. The variant with the highest activity in the second library was PHBH-MWNL (V47M, W185, L199N, and L210), whose activity was more than 100 times that of the wild-type PHBH. For elucidation of the mechanism of the observed activity enhancement, the crystal structure of PHBH-MWNL in complex with 4-hydroxy-3-methyl benzoic acid was determined. In the PHBH-MWNL crystal structure, the missing water molecule WAT2 was observed due to N199 hydrogen-bonding to WAT2, indicating that the L199N mutation contributed to the observed functional improvement by stabilizing the proton relay network proposed to be important in catalysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whisper发布了新的文献求助10
刚刚
浮游应助瘦瘦的绿凝采纳,获得10
刚刚
高高行云发布了新的文献求助10
刚刚
白水发布了新的文献求助10
2秒前
酥脆小鱼发布了新的文献求助10
2秒前
2秒前
3秒前
cbj应助加菲丰丰采纳,获得10
3秒前
橘园发布了新的文献求助10
3秒前
俊秀的傲松完成签到,获得积分10
3秒前
3秒前
hly发布了新的文献求助10
4秒前
5秒前
5秒前
情怀应助陈辰晨采纳,获得10
5秒前
李健应助han采纳,获得10
6秒前
fd123完成签到,获得积分10
6秒前
6秒前
7秒前
星辰大海应助淡然的夜柳采纳,获得10
7秒前
天天快乐应助123采纳,获得10
8秒前
8秒前
酷波er应助viho采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
无极微光应助赫青亦采纳,获得20
9秒前
9秒前
9秒前
shanshui发布了新的文献求助10
10秒前
LILI2发布了新的文献求助10
10秒前
Frank应助仁爱的寻凝采纳,获得10
10秒前
11秒前
11秒前
xqf发布了新的文献求助10
12秒前
脑洞疼应助癞皮狗采纳,获得10
12秒前
典雅易蓉完成签到,获得积分10
12秒前
上官若男应助阿敬采纳,获得30
13秒前
波特卡斯D艾斯完成签到 ,获得积分10
13秒前
彗星入梦完成签到 ,获得积分10
14秒前
Twbzz发布了新的文献求助10
14秒前
科研通AI6应助美晶采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507945
求助须知:如何正确求助?哪些是违规求助? 4603407
关于积分的说明 14485334
捐赠科研通 4537440
什么是DOI,文献DOI怎么找? 2486673
邀请新用户注册赠送积分活动 1469203
关于科研通互助平台的介绍 1441568