Functional Enhancement of Flavin-Containing Monooxygenase through Machine Learning Methodology

黄素组 单加氧酶 化学 催化作用 密度泛函理论 组合化学 计算机科学 计算化学 生物化学 细胞色素P450
作者
Takuma Matsushita,Shinji Kishimoto,Kodai Hara,Hiroshi Hashimoto,Hideki Yamaguchi,Yutaka Saitô,Kenji Watanabe
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (9): 6945-6951 被引量:3
标识
DOI:10.1021/acscatal.4c00826
摘要

Directed evolution of enzymes often fails to obtain desirable variants because of the difficulty in exploring a huge sequence space. To obtain active variants from a very limited number of variants available at the laboratory scale, machine learning (ML)-guided engineering of enzymes is becoming an attractive methodology. However, as far as we know, there is no example of an ML-guided functional modification of flavin-containing monooxygenase (FMO). FMOs are known to catalyze a variety of oxidative reactions and are involved in the biosynthesis of many natural products (NPs). Therefore, it is expected that the ML-guided functional enhancement of FMO can contribute to the efficient development of NP derivatives. In this research, we focused on p-hydroxybenzoate hydroxylase (PHBH), a model FMO, and altered only four amino acid residues around the substrate binding site. ML models were trained with a small initial library covering only approximately 0.1% of the whole sequence space, and the ML-predicted second library was enriched with active variants. The variant with the highest activity in the second library was PHBH-MWNL (V47M, W185, L199N, and L210), whose activity was more than 100 times that of the wild-type PHBH. For elucidation of the mechanism of the observed activity enhancement, the crystal structure of PHBH-MWNL in complex with 4-hydroxy-3-methyl benzoic acid was determined. In the PHBH-MWNL crystal structure, the missing water molecule WAT2 was observed due to N199 hydrogen-bonding to WAT2, indicating that the L199N mutation contributed to the observed functional improvement by stabilizing the proton relay network proposed to be important in catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
十三月的过客完成签到,获得积分10
4秒前
甜美的秋尽完成签到,获得积分10
4秒前
坚强安波完成签到,获得积分10
5秒前
打不败的库洛完成签到,获得积分10
6秒前
星辰大海应助liyu采纳,获得10
7秒前
是小段呀发布了新的文献求助10
7秒前
9秒前
浮游应助nuo_11采纳,获得10
10秒前
刘老哥6完成签到 ,获得积分10
11秒前
11秒前
13秒前
liyk完成签到,获得积分10
13秒前
13秒前
星期八完成签到,获得积分10
15秒前
17秒前
liyu完成签到,获得积分20
17秒前
阔达凝天发布了新的文献求助10
17秒前
17秒前
彭于晏应助bc采纳,获得10
18秒前
19秒前
19秒前
liyu发布了新的文献求助10
19秒前
20秒前
合适的自行车完成签到 ,获得积分10
21秒前
JK发布了新的文献求助10
22秒前
传奇3应助linda627采纳,获得30
22秒前
iiis发布了新的文献求助10
23秒前
小乐发布了新的文献求助10
23秒前
浮游应助程志鹏采纳,获得10
24秒前
玩命的书兰完成签到 ,获得积分10
24秒前
kellyfly完成签到,获得积分20
30秒前
Aer发布了新的文献求助10
30秒前
及时雨完成签到 ,获得积分10
30秒前
30秒前
laber应助精明凡双采纳,获得50
30秒前
文献分困户完成签到,获得积分10
32秒前
慕青应助单薄的广山采纳,获得10
33秒前
谭宇华发布了新的文献求助10
33秒前
学术大佬阿呆完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271770
求助须知:如何正确求助?哪些是违规求助? 4429311
关于积分的说明 13788207
捐赠科研通 4307656
什么是DOI,文献DOI怎么找? 2363689
邀请新用户注册赠送积分活动 1359366
关于科研通互助平台的介绍 1322346