Functional Enhancement of Flavin-Containing Monooxygenase through Machine Learning Methodology

黄素组 单加氧酶 化学 催化作用 密度泛函理论 组合化学 计算机科学 计算化学 生物化学 细胞色素P450
作者
Takuma Matsushita,Shinji Kishimoto,Kodai Hara,Hiroshi Hashimoto,Hideki Yamaguchi,Yutaka Saitô,Kenji Watanabe
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (9): 6945-6951 被引量:3
标识
DOI:10.1021/acscatal.4c00826
摘要

Directed evolution of enzymes often fails to obtain desirable variants because of the difficulty in exploring a huge sequence space. To obtain active variants from a very limited number of variants available at the laboratory scale, machine learning (ML)-guided engineering of enzymes is becoming an attractive methodology. However, as far as we know, there is no example of an ML-guided functional modification of flavin-containing monooxygenase (FMO). FMOs are known to catalyze a variety of oxidative reactions and are involved in the biosynthesis of many natural products (NPs). Therefore, it is expected that the ML-guided functional enhancement of FMO can contribute to the efficient development of NP derivatives. In this research, we focused on p-hydroxybenzoate hydroxylase (PHBH), a model FMO, and altered only four amino acid residues around the substrate binding site. ML models were trained with a small initial library covering only approximately 0.1% of the whole sequence space, and the ML-predicted second library was enriched with active variants. The variant with the highest activity in the second library was PHBH-MWNL (V47M, W185, L199N, and L210), whose activity was more than 100 times that of the wild-type PHBH. For elucidation of the mechanism of the observed activity enhancement, the crystal structure of PHBH-MWNL in complex with 4-hydroxy-3-methyl benzoic acid was determined. In the PHBH-MWNL crystal structure, the missing water molecule WAT2 was observed due to N199 hydrogen-bonding to WAT2, indicating that the L199N mutation contributed to the observed functional improvement by stabilizing the proton relay network proposed to be important in catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gao发布了新的文献求助10
刚刚
哈哈哈完成签到,获得积分20
刚刚
rio完成签到,获得积分10
2秒前
lucky发布了新的文献求助10
2秒前
2秒前
2秒前
TingWan发布了新的文献求助10
3秒前
cxm666发布了新的文献求助10
3秒前
羊村第一巴图鲁完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
所所应助臨水照花人采纳,获得10
6秒前
7秒前
7秒前
彩色诗云发布了新的文献求助10
8秒前
9秒前
悦007完成签到,获得积分10
10秒前
11秒前
田様应助清脆南蕾采纳,获得10
12秒前
Criminology34应助无情的宛儿采纳,获得10
12秒前
无花果应助无情的宛儿采纳,获得10
12秒前
悦007发布了新的文献求助10
14秒前
14秒前
七之完成签到,获得积分10
14秒前
14秒前
14秒前
stefdee发布了新的文献求助10
15秒前
JamesPei应助彩色诗云采纳,获得10
16秒前
duanyimeng发布了新的文献求助10
17秒前
17秒前
Hello应助南兮采纳,获得10
18秒前
19秒前
heima发布了新的文献求助10
19秒前
junglebag完成签到,获得积分20
20秒前
无花果应助唯我文乃采纳,获得10
20秒前
充电宝应助风格采纳,获得30
21秒前
随行完成签到 ,获得积分10
22秒前
春色未软旧苔痕完成签到,获得积分10
23秒前
25秒前
坚强的山芙完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405424
求助须知:如何正确求助?哪些是违规求助? 4523745
关于积分的说明 14095053
捐赠科研通 4437438
什么是DOI,文献DOI怎么找? 2435688
邀请新用户注册赠送积分活动 1427810
关于科研通互助平台的介绍 1406086