Functional Enhancement of Flavin-Containing Monooxygenase through Machine Learning Methodology

黄素组 单加氧酶 化学 催化作用 密度泛函理论 组合化学 计算机科学 计算化学 生物化学 细胞色素P450
作者
Takuma Matsushita,Shinji Kishimoto,Kodai Hara,Hiroshi Hashimoto,Hideki Yamaguchi,Yutaka Saitô,Kenji Watanabe
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (9): 6945-6951 被引量:3
标识
DOI:10.1021/acscatal.4c00826
摘要

Directed evolution of enzymes often fails to obtain desirable variants because of the difficulty in exploring a huge sequence space. To obtain active variants from a very limited number of variants available at the laboratory scale, machine learning (ML)-guided engineering of enzymes is becoming an attractive methodology. However, as far as we know, there is no example of an ML-guided functional modification of flavin-containing monooxygenase (FMO). FMOs are known to catalyze a variety of oxidative reactions and are involved in the biosynthesis of many natural products (NPs). Therefore, it is expected that the ML-guided functional enhancement of FMO can contribute to the efficient development of NP derivatives. In this research, we focused on p-hydroxybenzoate hydroxylase (PHBH), a model FMO, and altered only four amino acid residues around the substrate binding site. ML models were trained with a small initial library covering only approximately 0.1% of the whole sequence space, and the ML-predicted second library was enriched with active variants. The variant with the highest activity in the second library was PHBH-MWNL (V47M, W185, L199N, and L210), whose activity was more than 100 times that of the wild-type PHBH. For elucidation of the mechanism of the observed activity enhancement, the crystal structure of PHBH-MWNL in complex with 4-hydroxy-3-methyl benzoic acid was determined. In the PHBH-MWNL crystal structure, the missing water molecule WAT2 was observed due to N199 hydrogen-bonding to WAT2, indicating that the L199N mutation contributed to the observed functional improvement by stabilizing the proton relay network proposed to be important in catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助碧蓝幻灵采纳,获得10
1秒前
活力的战斗机完成签到,获得积分10
2秒前
yuhui完成签到,获得积分10
2秒前
2秒前
宇文雨文完成签到 ,获得积分10
3秒前
爱吃冻梨完成签到,获得积分10
4秒前
4秒前
大号完成签到,获得积分10
5秒前
ice发布了新的文献求助20
5秒前
6秒前
7秒前
爱学习的大聪明完成签到,获得积分10
7秒前
快飞飞完成签到 ,获得积分10
7秒前
LIU完成签到,获得积分10
8秒前
秘小先儿应助张晟辉采纳,获得10
8秒前
lzp发布了新的文献求助10
8秒前
Little2发布了新的文献求助10
8秒前
清爽的铭发布了新的文献求助20
8秒前
就滴滴勾儿完成签到,获得积分10
9秒前
高高高完成签到,获得积分10
9秒前
迅速的鹤完成签到,获得积分10
9秒前
传奇3应助STP顶峰相见采纳,获得10
9秒前
星期八约会猪猪侠完成签到,获得积分10
10秒前
朱先生完成签到 ,获得积分10
10秒前
不知所措的咪完成签到,获得积分10
10秒前
哆啦的空间站完成签到,获得积分10
10秒前
Army616完成签到,获得积分10
10秒前
10秒前
烂漫奇异果完成签到,获得积分10
10秒前
零一发布了新的文献求助10
11秒前
小广完成签到,获得积分10
11秒前
Leclerc应助LJQ采纳,获得10
12秒前
13秒前
野猪大王完成签到 ,获得积分10
13秒前
碧蓝幻灵完成签到,获得积分10
14秒前
14秒前
ZZ完成签到,获得积分20
14秒前
烟花应助鳄鱼蛋采纳,获得10
14秒前
拼搏尔风发布了新的文献求助30
14秒前
bkagyin应助人生若只如初见采纳,获得10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051