Deep learning algorithms for temperature prediction in two-phase immersion-cooled data centres

沉浸式(数学) 算法 计算机科学 材料科学 人工智能 机器学习 数学 几何学
作者
Pratheek Suresh,C. Balaji
出处
期刊:International Journal of Numerical Methods for Heat & Fluid Flow [Emerald (MCB UP)]
卷期号:34 (8): 2917-2942 被引量:1
标识
DOI:10.1108/hff-08-2023-0468
摘要

Purpose As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a dielectric fluid, has emerged as a promising alternative. Ensuring reliable operations in data centre applications requires the development of an effective control framework for immersion cooling systems, which necessitates the prediction of server temperature. While deep learning-based temperature prediction models have shown effectiveness, further enhancement is needed to improve their prediction accuracy. This study aims to develop a temperature prediction model using Long Short-Term Memory (LSTM) Networks based on recursive encoder-decoder architecture. Design/methodology/approach This paper explores the use of deep learning algorithms to predict the temperature of a heater in a two-phase immersion-cooled system using NOVEC 7100. The performance of recursive-long short-term memory-encoder-decoder (R-LSTM-ED), recursive-convolutional neural network-LSTM (R-CNN-LSTM) and R-LSTM approaches are compared using mean absolute error, root mean square error, mean absolute percentage error and coefficient of determination ( R 2 ) as performance metrics. The impact of window size, sampling period and noise within training data on the performance of the model is investigated. Findings The R-LSTM-ED consistently outperforms the R-LSTM model by 6%, 15.8% and 12.5%, and R-CNN-LSTM model by 4%, 11% and 12.3% in all forecast ranges of 10, 30 and 60 s, respectively, averaged across all the workloads considered in the study. The optimum sampling period based on the study is found to be 2 s and the window size to be 60 s. The performance of the model deteriorates significantly as the noise level reaches 10%. Research limitations/implications The proposed models are currently trained on data collected from an experimental setup simulating data centre loads. Future research should seek to extend the applicability of the models by incorporating time series data from immersion-cooled servers. Originality/value The proposed multivariate-recursive-prediction models are trained and tested by using real Data Centre workload traces applied to the immersion-cooled system developed in the laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助Dreamer0422采纳,获得10
1秒前
1秒前
rosalieshi应助圈圈采纳,获得50
2秒前
2秒前
2秒前
Y先生发布了新的文献求助20
2秒前
疯少发布了新的文献求助10
2秒前
yoos发布了新的文献求助10
5秒前
大气糖豆完成签到 ,获得积分10
10秒前
adam完成签到,获得积分10
10秒前
klb13应助科研通管家采纳,获得10
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得30
11秒前
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
丰知然应助科研通管家采纳,获得10
12秒前
丰知然应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得30
12秒前
丰知然应助科研通管家采纳,获得10
12秒前
丰知然应助科研通管家采纳,获得10
12秒前
Emma完成签到 ,获得积分10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
Y先生完成签到,获得积分10
13秒前
Malmever完成签到,获得积分10
13秒前
良辰应助小尚要加油采纳,获得10
16秒前
LinMQ完成签到,获得积分10
18秒前
阳佟之槐完成签到,获得积分10
18秒前
Liu完成签到,获得积分20
20秒前
llee2005完成签到,获得积分10
21秒前
桐桐应助周一一采纳,获得10
22秒前
半夏完成签到,获得积分10
22秒前
Silence完成签到,获得积分10
23秒前
快乐小行星完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999