Spatiotemporal gated traffic trajectory simulation with semantic-aware graph learning

计算机科学 弹道 图形 人工智能 理论计算机科学 物理 天文
作者
Yu Wang,Ji Cao,Wenjie Huang,Zhihua Liu,Tongya Zheng,Mingli Song
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102404-102404 被引量:3
标识
DOI:10.1016/j.inffus.2024.102404
摘要

Traffic trajectories of various vehicles, bicycles and pedestrians can help understand the traffic dynamics in a fine-grained manner like traffic flow, traffic congestion and ride-hailing demand. The comprehensive usage of traffic trajectory data has not been fully investigated due to the prevalent privacy concerns and commercial limitations. The traffic trajectory simulation task has emerged to generate high-fidelity trajectories in demand for downstream tasks to fill the gap between the scarce trajectory data and the widespread applications. Previous state-of-the-art methods build the spatiotemporal dependencies of trajectories with Graph Neural Networks (GNNs) under generative adversarial training, yielding better yet unstable trajectory quality. We observe that the unsatisfied synthetic trajectories are caused by the insufficient spatiotemporal modeling of road networks and trajectory semantics. In this paper, we propose a novel SpatioTEmporal GAted (STEGA) framework equipped with semantic-aware graph learning for traffic trajectory simulation to enable the explicit modeling of spatiotemporal dependencies throughout the learning pipeline. On the one hand, STEGA employs a graph encoder with the semantics of road networks for the spatial points of a trajectory, together with a time encoder for the time points. On the other hand, STEGA devises two spatiotemporal gates with the semantic graphs for the predictions of the future trajectory. Boosted by the semantic-aware graph learning, the proposed STEGA outperforms the state-of-the-art counterparts consistently at both macro- and micro-level metrics on two datasets. Elaborate ablation studies and downstream tasks of the synthetic trajectories further demonstrate the superiority of STEGA. Our code will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助海绵采纳,获得10
刚刚
JY发布了新的文献求助10
刚刚
Ana完成签到,获得积分10
刚刚
2秒前
Owen应助不如看海采纳,获得10
3秒前
典雅的平松应助皓月千里采纳,获得10
3秒前
4秒前
噢噢噢噢完成签到,获得积分10
4秒前
4秒前
4秒前
桐桐应助Natua采纳,获得10
5秒前
5秒前
7秒前
qzgfeiqubu发布了新的文献求助10
7秒前
7秒前
喜喜发布了新的文献求助10
7秒前
justlmq发布了新的文献求助10
7秒前
必中发布了新的文献求助10
8秒前
8秒前
我叫蜜柑发布了新的文献求助10
9秒前
魁梧的虔发布了新的文献求助60
9秒前
sky完成签到,获得积分10
9秒前
sasa完成签到,获得积分10
9秒前
10秒前
lntano完成签到,获得积分20
10秒前
终极007完成签到 ,获得积分10
10秒前
qingxu完成签到,获得积分10
10秒前
lzz应助帅气凝云采纳,获得10
10秒前
小蘑菇应助遆怡寒采纳,获得10
10秒前
小蘑菇应助仁爱誉采纳,获得10
10秒前
rover完成签到 ,获得积分0
10秒前
10秒前
10秒前
11秒前
zwzh发布了新的文献求助30
11秒前
张倩完成签到,获得积分20
11秒前
11秒前
12秒前
完美世界应助latte采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2025山东省直机关硬笔书法展示活动获奖名单 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4939388
求助须知:如何正确求助?哪些是违规求助? 4205811
关于积分的说明 13071712
捐赠科研通 3984189
什么是DOI,文献DOI怎么找? 2181538
邀请新用户注册赠送积分活动 1197342
关于科研通互助平台的介绍 1109574