Spatiotemporal gated traffic trajectory simulation with semantic-aware graph learning

计算机科学 弹道 图形 人工智能 理论计算机科学 物理 天文
作者
Yu Wang,Ji Cao,Wenjie Huang,Zhihua Liu,Tongya Zheng,Mingli Song
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102404-102404 被引量:3
标识
DOI:10.1016/j.inffus.2024.102404
摘要

Traffic trajectories of various vehicles, bicycles and pedestrians can help understand the traffic dynamics in a fine-grained manner like traffic flow, traffic congestion and ride-hailing demand. The comprehensive usage of traffic trajectory data has not been fully investigated due to the prevalent privacy concerns and commercial limitations. The traffic trajectory simulation task has emerged to generate high-fidelity trajectories in demand for downstream tasks to fill the gap between the scarce trajectory data and the widespread applications. Previous state-of-the-art methods build the spatiotemporal dependencies of trajectories with Graph Neural Networks (GNNs) under generative adversarial training, yielding better yet unstable trajectory quality. We observe that the unsatisfied synthetic trajectories are caused by the insufficient spatiotemporal modeling of road networks and trajectory semantics. In this paper, we propose a novel SpatioTEmporal GAted (STEGA) framework equipped with semantic-aware graph learning for traffic trajectory simulation to enable the explicit modeling of spatiotemporal dependencies throughout the learning pipeline. On the one hand, STEGA employs a graph encoder with the semantics of road networks for the spatial points of a trajectory, together with a time encoder for the time points. On the other hand, STEGA devises two spatiotemporal gates with the semantic graphs for the predictions of the future trajectory. Boosted by the semantic-aware graph learning, the proposed STEGA outperforms the state-of-the-art counterparts consistently at both macro- and micro-level metrics on two datasets. Elaborate ablation studies and downstream tasks of the synthetic trajectories further demonstrate the superiority of STEGA. Our code will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zssl发布了新的文献求助10
1秒前
邹栗完成签到 ,获得积分10
7秒前
hello完成签到,获得积分10
7秒前
butaishao完成签到,获得积分10
7秒前
starwan完成签到 ,获得积分10
10秒前
矜天完成签到 ,获得积分10
10秒前
momo应助zydong采纳,获得10
12秒前
12秒前
15秒前
大个应助完犊子采纳,获得10
16秒前
bzdjsmw完成签到 ,获得积分10
18秒前
pengchen完成签到 ,获得积分10
18秒前
19秒前
贝贝完成签到 ,获得积分10
26秒前
taipingyang完成签到,获得积分10
27秒前
27秒前
叶123完成签到,获得积分10
28秒前
30秒前
32秒前
Autin完成签到,获得积分0
34秒前
完犊子发布了新的文献求助10
35秒前
zc完成签到 ,获得积分10
36秒前
Grinder完成签到 ,获得积分10
39秒前
42秒前
Fiona完成签到 ,获得积分10
43秒前
大力水手完成签到,获得积分0
44秒前
繁荣的新晴完成签到,获得积分20
46秒前
lmh发布了新的文献求助10
47秒前
顺利纸飞机完成签到 ,获得积分10
49秒前
不会学习的小郭完成签到 ,获得积分10
53秒前
呵呵喊我完成签到,获得积分10
56秒前
59秒前
万能图书馆应助Rabbit采纳,获得10
1分钟前
1分钟前
duonicola发布了新的文献求助10
1分钟前
lmh完成签到,获得积分10
1分钟前
zydong完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991014
求助须知:如何正确求助?哪些是违规求助? 3532262
关于积分的说明 11256771
捐赠科研通 3271164
什么是DOI,文献DOI怎么找? 1805344
邀请新用户注册赠送积分活动 882304
科研通“疑难数据库(出版商)”最低求助积分说明 809236