Spatiotemporal gated traffic trajectory simulation with semantic-aware graph learning

计算机科学 弹道 图形 人工智能 理论计算机科学 物理 天文
作者
Yu Wang,Ji Cao,Wenjie Huang,Zhihua Liu,Tongya Zheng,Mingli Song
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102404-102404
标识
DOI:10.1016/j.inffus.2024.102404
摘要

Traffic trajectories of various vehicles, bicycles and pedestrians can help understand the traffic dynamics in a fine-grained manner like traffic flow, traffic congestion and ride-hailing demand. The comprehensive usage of traffic trajectory data has not been fully investigated due to the prevalent privacy concerns and commercial limitations. The traffic trajectory simulation task has emerged to generate high-fidelity trajectories in demand for downstream tasks to fill the gap between the scarce trajectory data and the widespread applications. Previous state-of-the-art methods build the spatiotemporal dependencies of trajectories with Graph Neural Networks (GNNs) under generative adversarial training, yielding better yet unstable trajectory quality. We observe that the unsatisfied synthetic trajectories are caused by the insufficient spatiotemporal modeling of road networks and trajectory semantics. In this paper, we propose a novel SpatioTEmporal GAted (STEGA) framework equipped with semantic-aware graph learning for traffic trajectory simulation to enable the explicit modeling of spatiotemporal dependencies throughout the learning pipeline. On the one hand, STEGA employs a graph encoder with the semantics of road networks for the spatial points of a trajectory, together with a time encoder for the time points. On the other hand, STEGA devises two spatiotemporal gates with the semantic graphs for the predictions of the future trajectory. Boosted by the semantic-aware graph learning, the proposed STEGA outperforms the state-of-the-art counterparts consistently at both macro- and micro-level metrics on two datasets. Elaborate ablation studies and downstream tasks of the synthetic trajectories further demonstrate the superiority of STEGA. Our code will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Robe发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
1秒前
gxyme发布了新的文献求助10
1秒前
科研通AI2S应助能干水蓝采纳,获得10
1秒前
day_on发布了新的文献求助10
1秒前
脑洞疼应助YJ采纳,获得10
2秒前
YxY发布了新的文献求助10
2秒前
聪明的天亦完成签到,获得积分10
2秒前
思睿拜发布了新的文献求助10
3秒前
3秒前
4秒前
爆米花应助派派星采纳,获得10
4秒前
科研狼小白完成签到,获得积分10
4秒前
无花果应助Hcw0525采纳,获得10
4秒前
4秒前
5秒前
斯文的若颜完成签到,获得积分10
5秒前
Caer完成签到 ,获得积分10
5秒前
5秒前
6秒前
雪白的臻完成签到,获得积分10
6秒前
6秒前
阿飞大师发布了新的文献求助10
7秒前
7秒前
su发布了新的文献求助10
7秒前
Zhlili完成签到,获得积分10
8秒前
Akim应助在人类采纳,获得10
8秒前
tlrelax发布了新的文献求助10
9秒前
9秒前
OAOA发布了新的文献求助10
9秒前
10秒前
10秒前
郝宝真发布了新的文献求助10
10秒前
10秒前
很在乎发布了新的文献求助10
10秒前
你讲咩发布了新的文献求助10
10秒前
好运来发布了新的文献求助10
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169526
求助须知:如何正确求助?哪些是违规求助? 2820711
关于积分的说明 7931902
捐赠科研通 2481044
什么是DOI,文献DOI怎么找? 1321655
科研通“疑难数据库(出版商)”最低求助积分说明 633307
版权声明 602530