Spatiotemporal gated traffic trajectory simulation with semantic-aware graph learning

计算机科学 弹道 图形 人工智能 理论计算机科学 物理 天文
作者
Yu Wang,Ji Cao,Wenjie Huang,Zhihua Liu,Tongya Zheng,Mingli Song
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102404-102404 被引量:3
标识
DOI:10.1016/j.inffus.2024.102404
摘要

Traffic trajectories of various vehicles, bicycles and pedestrians can help understand the traffic dynamics in a fine-grained manner like traffic flow, traffic congestion and ride-hailing demand. The comprehensive usage of traffic trajectory data has not been fully investigated due to the prevalent privacy concerns and commercial limitations. The traffic trajectory simulation task has emerged to generate high-fidelity trajectories in demand for downstream tasks to fill the gap between the scarce trajectory data and the widespread applications. Previous state-of-the-art methods build the spatiotemporal dependencies of trajectories with Graph Neural Networks (GNNs) under generative adversarial training, yielding better yet unstable trajectory quality. We observe that the unsatisfied synthetic trajectories are caused by the insufficient spatiotemporal modeling of road networks and trajectory semantics. In this paper, we propose a novel SpatioTEmporal GAted (STEGA) framework equipped with semantic-aware graph learning for traffic trajectory simulation to enable the explicit modeling of spatiotemporal dependencies throughout the learning pipeline. On the one hand, STEGA employs a graph encoder with the semantics of road networks for the spatial points of a trajectory, together with a time encoder for the time points. On the other hand, STEGA devises two spatiotemporal gates with the semantic graphs for the predictions of the future trajectory. Boosted by the semantic-aware graph learning, the proposed STEGA outperforms the state-of-the-art counterparts consistently at both macro- and micro-level metrics on two datasets. Elaborate ablation studies and downstream tasks of the synthetic trajectories further demonstrate the superiority of STEGA. Our code will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏一曲发布了新的文献求助10
刚刚
CAOHOU应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得20
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
wushuwen发布了新的文献求助10
2秒前
3秒前
xuan完成签到,获得积分10
4秒前
完美世界应助段一帆采纳,获得10
6秒前
少敏敏完成签到,获得积分10
8秒前
may发布了新的文献求助10
8秒前
13秒前
15秒前
兜兜关注了科研通微信公众号
15秒前
wbh完成签到,获得积分10
16秒前
太牛的GGB发布了新的文献求助10
16秒前
wbh发布了新的文献求助10
18秒前
乐乐应助may采纳,获得10
18秒前
顺利的梦菲完成签到 ,获得积分10
19秒前
777完成签到 ,获得积分10
19秒前
上官若男应助忧郁盼夏采纳,获得10
20秒前
冷艳的姿发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173