亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatiotemporal gated traffic trajectory simulation with semantic-aware graph learning

计算机科学 弹道 图形 人工智能 理论计算机科学 物理 天文
作者
Yu Wang,Ji Cao,Wenjie Huang,Zhihua Liu,Tongya Zheng,Mingli Song
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102404-102404 被引量:3
标识
DOI:10.1016/j.inffus.2024.102404
摘要

Traffic trajectories of various vehicles, bicycles and pedestrians can help understand the traffic dynamics in a fine-grained manner like traffic flow, traffic congestion and ride-hailing demand. The comprehensive usage of traffic trajectory data has not been fully investigated due to the prevalent privacy concerns and commercial limitations. The traffic trajectory simulation task has emerged to generate high-fidelity trajectories in demand for downstream tasks to fill the gap between the scarce trajectory data and the widespread applications. Previous state-of-the-art methods build the spatiotemporal dependencies of trajectories with Graph Neural Networks (GNNs) under generative adversarial training, yielding better yet unstable trajectory quality. We observe that the unsatisfied synthetic trajectories are caused by the insufficient spatiotemporal modeling of road networks and trajectory semantics. In this paper, we propose a novel SpatioTEmporal GAted (STEGA) framework equipped with semantic-aware graph learning for traffic trajectory simulation to enable the explicit modeling of spatiotemporal dependencies throughout the learning pipeline. On the one hand, STEGA employs a graph encoder with the semantics of road networks for the spatial points of a trajectory, together with a time encoder for the time points. On the other hand, STEGA devises two spatiotemporal gates with the semantic graphs for the predictions of the future trajectory. Boosted by the semantic-aware graph learning, the proposed STEGA outperforms the state-of-the-art counterparts consistently at both macro- and micro-level metrics on two datasets. Elaborate ablation studies and downstream tasks of the synthetic trajectories further demonstrate the superiority of STEGA. Our code will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助潘善若采纳,获得10
2秒前
9秒前
五十一完成签到 ,获得积分10
17秒前
奇遇完成签到 ,获得积分10
18秒前
27秒前
含糊的安柏完成签到,获得积分10
29秒前
huihongzeng发布了新的文献求助10
29秒前
NexusExplorer应助含糊的安柏采纳,获得10
32秒前
33秒前
冷静新烟完成签到,获得积分20
35秒前
冷静新烟发布了新的文献求助10
37秒前
简单山水发布了新的文献求助10
38秒前
Novajet完成签到,获得积分10
41秒前
yx_cheng应助归海浩阑采纳,获得30
43秒前
ding应助科研通管家采纳,获得10
43秒前
43秒前
大碗完成签到 ,获得积分10
44秒前
桐桐应助简单山水采纳,获得10
45秒前
47秒前
Novajet发布了新的文献求助10
48秒前
小碗完成签到 ,获得积分10
50秒前
52秒前
53秒前
黄桂斌完成签到,获得积分10
59秒前
许三问完成签到 ,获得积分0
1分钟前
略略完成签到,获得积分10
1分钟前
情怀应助Novajet采纳,获得10
1分钟前
小凯完成签到 ,获得积分10
1分钟前
乐乐乐乐乐乐应助Yang采纳,获得10
1分钟前
1分钟前
965481发布了新的文献求助10
1分钟前
965481完成签到,获得积分10
1分钟前
脑洞疼应助不高兴采纳,获得10
1分钟前
1分钟前
斯寜完成签到,获得积分0
1分钟前
Aqib发布了新的文献求助10
1分钟前
光源处发布了新的文献求助10
2分钟前
Aqib完成签到,获得积分10
2分钟前
hua完成签到,获得积分10
2分钟前
李爱国应助光源处采纳,获得10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532077
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805139
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228