磷光
无定形固体
激发态
材料科学
光化学
发光
二聚体
纳米晶
化学物理
纳米技术
光电子学
荧光
化学
结晶学
光学
原子物理学
有机化学
物理
作者
Danman Guo,Wen Wang,Kaimin Zhang,Jinzheng Chen,Li Wang,Tianyi Wang,Wangmeng Hou,Zhen Zhang,Huahua Huang,Zhenguo Chi,Zhiyong Yang
标识
DOI:10.1038/s41467-024-47937-7
摘要
Abstract Organic room temperature phosphorescence (RTP) has significant potential in various applications of information storage, anti-counterfeiting, and bio-imaging. However, achieving robust organic RTP emission of the single-component system is challenging to overcome the restriction of the crystalline state or other rigid environments with cautious treatment. Herein, we report a single-component system with robust persistent RTP emission in various aggregated forms, such as crystal, fine powder, and even amorphous states. Our experimental data reveal that the vigorous RTP emissions rely on their tight dimers based on strong and large-overlap π - π interactions between polycyclic aromatic hydrocarbon (PAH) groups. The dimer structure can offer not only excitons in low energy levels for visible-light excited red long-lived RTP but also suppression of the nonradiative decays even in an amorphous state for good resistance of RTP to heat (up to 70 °C) or water. Furthermore, we demonstrate the water-dispersible nanoparticle with persistent RTP over 600 nm and a lifetime of 0.22 s for visible-light excited cellular and in-vivo imaging, prepared through the common microemulsion approach without overcaution for nanocrystal formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI