Contour and Enclosed Region Refining for Contour-based Instance Segmentation

分割 计算机科学 人工智能 活动轮廓模型 模式识别(心理学) 边界(拓扑) 图像分割 对象(语法) 等高线 计算机视觉 极坐标系 数学 几何学 物理 数学分析 气象学
作者
Wenchao Gu,Shuang Bai
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcds.2023.3247100
摘要

Current contour-based instance segmentation methods predict sets of vertexes to form contours to enclose object instances in images for realizing instance segmentation. Due to the inaccuracy of contour vertexes for describing object instances, mask decay and contour decay issues arise, limiting the performances of contour-based instance segmentation methods. In order to address these issues, in this paper we propose to design a contour and enclosed region refining network module, named CORE, to integrate to basic contour-based instance segmentation methods to obtain high-quality instance segmentation results. Specifically, we adopt a graph convolutional network to utilize correlation among initially predicted contour vertexes for refinement to address the contour decay issue. And, we predict and assemble a set of boundary-aware heatmaps to eliminate external regions enclosed within predicted object instance contours to relieve the mask decay problem. Furthermore, we propose several improvements that can be made to a basic contour-based instance segmentation method, i.e. Polar GIoU loss, Internal Center, and Hard Sample Polar Centerness. Finally, extensive experiments are conducted on the COCO dataset to evaluate the effectiveness of the proposed method. Experimental results show that our method can achieve 39.8 mAP on the COCO dataset, which outperforms state-of-the-art contour-based instance segmentation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古药完成签到,获得积分10
刚刚
Ava应助欣喜翠丝采纳,获得10
1秒前
贤惠的煎蛋完成签到,获得积分10
1秒前
ttt发布了新的文献求助20
1秒前
1秒前
1秒前
泥巴完成签到,获得积分10
2秒前
lxl发布了新的文献求助10
2秒前
2秒前
英俊的铭应助LL采纳,获得10
2秒前
2秒前
3秒前
雾落完成签到,获得积分10
3秒前
汉堡包应助Ok采纳,获得10
3秒前
Molly0303发布了新的文献求助10
3秒前
零度蓝莓完成签到,获得积分10
4秒前
科研通AI6应助aaa采纳,获得10
4秒前
522发布了新的文献求助10
4秒前
4秒前
5秒前
贾雯倩发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
Rixxed发布了新的文献求助10
6秒前
kkkk发布了新的文献求助10
6秒前
6秒前
7秒前
所所应助古城小街采纳,获得10
7秒前
7秒前
月光刻本完成签到 ,获得积分10
8秒前
小马甲应助零度蓝莓采纳,获得30
8秒前
脑洞疼应助rose采纳,获得30
8秒前
8秒前
9秒前
香蕉觅云应助ZSC采纳,获得10
9秒前
9秒前
9秒前
阴香萍完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653486
求助须知:如何正确求助?哪些是违规求助? 4790016
关于积分的说明 15064423
捐赠科研通 4812137
什么是DOI,文献DOI怎么找? 2574306
邀请新用户注册赠送积分活动 1529926
关于科研通互助平台的介绍 1488661