材料科学
聚合物
极限抗拉强度
复合材料
海水
延展性(地球科学)
强度折减
粉煤灰
抗压强度
冶金
海洋学
结构工程
蠕动
地质学
工程类
有限元法
作者
Jian-Cong Lao,Bo-Tao Huang,Ling-Yu Xu,Mehran Khan,Yi Fang,Jian‐Guo Dai
标识
DOI:10.1016/j.cemconcomp.2023.104998
摘要
In this study, seawater sea-sand Engineered Geopolymer Composites (SS-EGC) were developed and investigated for the first time. The developed EGC achieved high compressive strength (over 140 MPa) and high tensile ductility (around 8%) simultaneously. Emphasis was placed on understanding the influence of seawater and sea-sand (compared to freshwater and washed sea-sand) on the matrix properties and tensile performance of EGC, with two fly ash-to-slag ratios (8:2 and 2:8) considered in the matrices. Results showed that the use of seawater hindered the reaction of EGC matrix and led to a slight reduction of compressive strength (compared to the freshwater counterpart). It was found that the content of hydrotalcite phases in SS-EGC matrix was higher than that of freshwater EGC. In addition, using seawater was found to increase the average modulus of matrix obtained from nanoindentation, leading to a higher fiber/matrix bond strength. The tensile strain capacity of SS-EGC was slightly lower than that of freshwater EGC. The developed SS-EGC showed superior crack resistance and better sustainability than the cement-based counterpart from the literature (with similar compressive strength). The findings of this study provided useful knowledge for the design and development of high-strength high-ductility SS-EGC towards sustainable and resilient marine infrastructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI