Multiscale Diff-Changed Feature Fusion Network for Hyperspectral Image Change Detection

判别式 模式识别(心理学) 人工智能 计算机科学 特征(语言学) 高光谱成像 子网 特征提取 自编码 变更检测 融合 保险丝(电气) 特征学习 代表(政治) 人工神经网络 法学 工程类 哲学 政治学 电气工程 政治 语言学 计算机安全
作者
Fulin Luo,Tianyuan Zhou,Jiamin Liu,Tan Guo,Xiuwen Gong,Jinchang Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:87
标识
DOI:10.1109/tgrs.2023.3241097
摘要

For hyperspectral image (HSI) change detection (CD), multiscale features are usually used to construct the detection models. However, the existing studies only consider the multiscale features containing changed and unchanged components, which is difficult to represent the subtle changes between bitemporal HSIs in each scale. To address this problem, we propose a multiscale diff-changed feature fusion network (MSDFFN) for HSI CD, which improves the ability of feature representation by learning the refined change components between bitemporal HSIs under different scales. In this network, a temporal feature encoder–decoder subnetwork, which combines a reduced inception (RI) module and a cross-layer attention module to highlight the significant features, is designed to extract the temporal features of HSIs. A bidirectional diff-changed feature representation (BDFR) module is proposed to learn the fine changed features of bitemporal HSIs at various scales to enhance the discriminative performance of the subtle change. A multiscale attention fusion (MSAF) module is developed to adaptively fuse the changed features of various scales. The proposed method can not only discover the subtle change in bitemporal HSIs but also improve the discriminating power for HSI CD. Experimental results on three HSI datasets show that MSDFFN outperforms a few state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉从筠发布了新的文献求助10
1秒前
zhangxiao完成签到,获得积分10
1秒前
科研通AI5应助落寞的易绿采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得30
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
wxyshare应助科研通管家采纳,获得10
2秒前
cherlie应助科研通管家采纳,获得20
2秒前
斯文败类应助邱化兴采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
chenjun7080发布了新的文献求助10
2秒前
今后应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
LPH应助科研通管家采纳,获得30
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
Eva完成签到,获得积分10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得30
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
yyf发布了新的文献求助10
4秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019