Peptide-binding specificity prediction using fine-tuned protein structure prediction networks

序列(生物学) 计算生物学 计算机科学 分类器(UML) 人工智能 PDZ域 蛋白质结构预测 机器学习 蛋白质结构 数据挖掘 生物 遗传学 生物化学
作者
Amir Motmaen,Justas Dauparas,Minkyung Baek,Mohamad H. Abedi,David Baker,Philip Bradley
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (9) 被引量:40
标识
DOI:10.1073/pnas.2216697120
摘要

Peptide-binding proteins play key roles in biology, and predicting their binding specificity is a long-standing challenge. While considerable protein structural information is available, the most successful current methods use sequence information alone, in part because it has been a challenge to model the subtle structural changes accompanying sequence substitutions. Protein structure prediction networks such as AlphaFold model sequence-structure relationships very accurately, and we reasoned that if it were possible to specifically train such networks on binding data, more generalizable models could be created. We show that placing a classifier on top of the AlphaFold network and fine-tuning the combined network parameters for both classification and structure prediction accuracy leads to a model with strong generalizable performance on a wide range of Class I and Class II peptide-MHC interactions that approaches the overall performance of the state-of-the-art NetMHCpan sequence-based method. The peptide-MHC optimized model shows excellent performance in distinguishing binding and non-binding peptides to SH3 and PDZ domains. This ability to generalize well beyond the training set far exceeds that of sequence-only models and should be particularly powerful for systems where less experimental data are available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
就这样完成签到 ,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
zhazhalaoke应助科研通管家采纳,获得10
2秒前
zhazhalaoke应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
聪慧小霜应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
聪慧小霜应助科研通管家采纳,获得10
3秒前
1111应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
聪慧小霜应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
missme应助科研通管家采纳,获得20
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
4秒前
jie酱拌面应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
Chosen_1完成签到,获得积分10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得20
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835