Cross-region plastic greenhouse segmentation and counting using the style transfer and dual-task networks

分割 计算机科学 人工智能 学习迁移 任务(项目管理) 杠杆(统计) 模式识别(心理学) 计算机视觉 工程类 系统工程
作者
Xiangyu Liu,Wei He,Hongyan Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:207: 107766-107766
标识
DOI:10.1016/j.compag.2023.107766
摘要

Plastic Greenhouse (PG) is a vital component of protected agriculture, that can enhance crop yields and quality by altering the local microclimate conditions. Obtaining the number and distribution of PG based on high-resolution remote sensing images is important for agricultural policymaking. However, due to the variability and interconnection of PGs in high-resolution images, counting and mapping them accurately is challenging. In addition, variation in data distribution across regions restricts the reuse of the trained model beyond the study area, impeding the cross-regional application from the source region to the target region. To address this limitation, this paper proposes a novel Cross-Regional Segmentation and Counting framework (CRSC) that integrates the unsupervised Style Transfer Network (STNet) and dual task-based Segmentation Counting Network (SCNet) to perform simultaneous PG segmentation and counting across different regions. The STNet is adopted as a target-adaptive data augmentation strategy to generate fake training samples from the source training samples. The SCNet is designed as a dual-task structure to perform the PG segmentation and PG counts simultaneously. Specifically, for each target region, we use the STNet to generate the fake training samples and then train a SCNet based on both source training samples and fake training samples. Subsequently, we leverage the trained SCNet to predict the segmentation and counting results of PGs, yielding the PG map and counting for each target region. The validation results on five target regions indicate that our proposed CRSC framework can achieve stable improvement in cross-regional segmentation and counting of PGs, especially in cases where the labeled samples in the source region are limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shxu完成签到,获得积分10
刚刚
刚刚
zzzcccy完成签到 ,获得积分10
1秒前
2秒前
cjcomm完成签到,获得积分10
2秒前
2秒前
酷波er应助静jing采纳,获得30
2秒前
摆烂好爽发布了新的文献求助10
4秒前
7秒前
Hou Pengxiao完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
李荷花完成签到 ,获得积分10
10秒前
勤劳的小牛蛙应助fule采纳,获得10
10秒前
12秒前
Haiser发布了新的文献求助10
12秒前
诚心谷南发布了新的文献求助10
12秒前
飘逸小笼包完成签到,获得积分10
12秒前
13秒前
13秒前
HUJL发布了新的文献求助10
14秒前
新之助完成签到,获得积分10
17秒前
Haiser完成签到,获得积分10
17秒前
柯一一应助攀登采纳,获得10
19秒前
SYLH应助ccc采纳,获得10
19秒前
静jing发布了新的文献求助30
19秒前
777发布了新的文献求助10
20秒前
20秒前
21秒前
风信子完成签到,获得积分10
21秒前
语冰完成签到,获得积分10
22秒前
慕辰发布了新的文献求助30
23秒前
24秒前
李菠萝发布了新的文献求助10
25秒前
爆米花应助yyy采纳,获得10
25秒前
26秒前
26秒前
体贴静竹完成签到 ,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498310
关于积分的说明 11091370
捐赠科研通 3228948
什么是DOI,文献DOI怎么找? 1785159
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377