Cross-region plastic greenhouse segmentation and counting using the style transfer and dual-task networks

分割 计算机科学 人工智能 学习迁移 任务(项目管理) 杠杆(统计) 模式识别(心理学) 计算机视觉 工程类 系统工程
作者
Xiangyu Liu,Wei He,Hongyan Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:207: 107766-107766
标识
DOI:10.1016/j.compag.2023.107766
摘要

Plastic Greenhouse (PG) is a vital component of protected agriculture, that can enhance crop yields and quality by altering the local microclimate conditions. Obtaining the number and distribution of PG based on high-resolution remote sensing images is important for agricultural policymaking. However, due to the variability and interconnection of PGs in high-resolution images, counting and mapping them accurately is challenging. In addition, variation in data distribution across regions restricts the reuse of the trained model beyond the study area, impeding the cross-regional application from the source region to the target region. To address this limitation, this paper proposes a novel Cross-Regional Segmentation and Counting framework (CRSC) that integrates the unsupervised Style Transfer Network (STNet) and dual task-based Segmentation Counting Network (SCNet) to perform simultaneous PG segmentation and counting across different regions. The STNet is adopted as a target-adaptive data augmentation strategy to generate fake training samples from the source training samples. The SCNet is designed as a dual-task structure to perform the PG segmentation and PG counts simultaneously. Specifically, for each target region, we use the STNet to generate the fake training samples and then train a SCNet based on both source training samples and fake training samples. Subsequently, we leverage the trained SCNet to predict the segmentation and counting results of PGs, yielding the PG map and counting for each target region. The validation results on five target regions indicate that our proposed CRSC framework can achieve stable improvement in cross-regional segmentation and counting of PGs, especially in cases where the labeled samples in the source region are limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然夏菡发布了新的文献求助10
2秒前
留胡子的问芙完成签到,获得积分10
4秒前
4秒前
11号楼203完成签到,获得积分0
4秒前
量子星尘发布了新的文献求助20
5秒前
ava完成签到 ,获得积分10
6秒前
6秒前
浪沧一刀完成签到,获得积分10
6秒前
7秒前
乐乐应助猪猪hero采纳,获得10
8秒前
科研通AI6应助哈哈采纳,获得10
8秒前
9秒前
汩浥发布了新的文献求助10
9秒前
小卤蛋完成签到,获得积分10
10秒前
10秒前
13秒前
puzhongjiMiQ完成签到,获得积分10
14秒前
大力沛萍发布了新的文献求助10
14秒前
14秒前
15秒前
大模型应助猪猪hero采纳,获得10
17秒前
18秒前
puzhongjiMiQ发布了新的文献求助10
19秒前
NexusExplorer应助哆啦A梦采纳,获得10
19秒前
黑木完成签到 ,获得积分10
19秒前
蟹老板完成签到,获得积分10
20秒前
爆米花应助feishi采纳,获得10
20秒前
20秒前
勤恳的心情完成签到,获得积分10
20秒前
弎夜完成签到,获得积分10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
22秒前
lilili应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
22秒前
chen完成签到,获得积分10
22秒前
花开应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4972255
求助须知:如何正确求助?哪些是违规求助? 4228445
关于积分的说明 13169355
捐赠科研通 4016534
什么是DOI,文献DOI怎么找? 2197918
邀请新用户注册赠送积分活动 1210679
关于科研通互助平台的介绍 1125332