已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-region plastic greenhouse segmentation and counting using the style transfer and dual-task networks

分割 计算机科学 人工智能 学习迁移 任务(项目管理) 杠杆(统计) 模式识别(心理学) 计算机视觉 工程类 系统工程
作者
Xiangyu Liu,Wei He,Hongyan Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:207: 107766-107766
标识
DOI:10.1016/j.compag.2023.107766
摘要

Plastic Greenhouse (PG) is a vital component of protected agriculture, that can enhance crop yields and quality by altering the local microclimate conditions. Obtaining the number and distribution of PG based on high-resolution remote sensing images is important for agricultural policymaking. However, due to the variability and interconnection of PGs in high-resolution images, counting and mapping them accurately is challenging. In addition, variation in data distribution across regions restricts the reuse of the trained model beyond the study area, impeding the cross-regional application from the source region to the target region. To address this limitation, this paper proposes a novel Cross-Regional Segmentation and Counting framework (CRSC) that integrates the unsupervised Style Transfer Network (STNet) and dual task-based Segmentation Counting Network (SCNet) to perform simultaneous PG segmentation and counting across different regions. The STNet is adopted as a target-adaptive data augmentation strategy to generate fake training samples from the source training samples. The SCNet is designed as a dual-task structure to perform the PG segmentation and PG counts simultaneously. Specifically, for each target region, we use the STNet to generate the fake training samples and then train a SCNet based on both source training samples and fake training samples. Subsequently, we leverage the trained SCNet to predict the segmentation and counting results of PGs, yielding the PG map and counting for each target region. The validation results on five target regions indicate that our proposed CRSC framework can achieve stable improvement in cross-regional segmentation and counting of PGs, especially in cases where the labeled samples in the source region are limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Kristine完成签到 ,获得积分10
2秒前
常绝山完成签到 ,获得积分10
3秒前
3秒前
NiuNiu发布了新的文献求助20
4秒前
chen完成签到,获得积分10
5秒前
meow完成签到 ,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
浮游应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
清爽老九应助科研通管家采纳,获得30
8秒前
情怀应助科研通管家采纳,获得10
8秒前
GingerF应助科研通管家采纳,获得50
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
加贝火火完成签到 ,获得积分10
8秒前
8秒前
清爽老九应助科研通管家采纳,获得30
8秒前
8秒前
kiko完成签到,获得积分20
10秒前
张章发布了新的文献求助10
10秒前
牛牛完成签到 ,获得积分10
11秒前
康谨完成签到 ,获得积分10
11秒前
无幻完成签到 ,获得积分10
16秒前
隐形曼青应助xjz采纳,获得10
17秒前
18秒前
19秒前
黑神白了完成签到 ,获得积分10
20秒前
鲜艳的采白应助mark707采纳,获得50
20秒前
团宝妞宝完成签到,获得积分10
22秒前
浮浮世世发布了新的文献求助10
23秒前
隐形曼青应助lf-leo采纳,获得10
24秒前
24秒前
我是老大应助joy采纳,获得10
25秒前
Xiao完成签到 ,获得积分10
26秒前
28秒前
Gzl完成签到 ,获得积分10
28秒前
30秒前
mark707完成签到,获得积分10
30秒前
laurina完成签到 ,获得积分10
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136552
求助须知:如何正确求助?哪些是违规求助? 4336682
关于积分的说明 13510228
捐赠科研通 4174745
什么是DOI,文献DOI怎么找? 2289040
邀请新用户注册赠送积分活动 1289739
关于科研通互助平台的介绍 1231058