Cross-region plastic greenhouse segmentation and counting using the style transfer and dual-task networks

分割 计算机科学 人工智能 学习迁移 任务(项目管理) 杠杆(统计) 模式识别(心理学) 计算机视觉 工程类 系统工程
作者
Xiangyu Liu,Wei He,Hongyan Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:207: 107766-107766
标识
DOI:10.1016/j.compag.2023.107766
摘要

Plastic Greenhouse (PG) is a vital component of protected agriculture, that can enhance crop yields and quality by altering the local microclimate conditions. Obtaining the number and distribution of PG based on high-resolution remote sensing images is important for agricultural policymaking. However, due to the variability and interconnection of PGs in high-resolution images, counting and mapping them accurately is challenging. In addition, variation in data distribution across regions restricts the reuse of the trained model beyond the study area, impeding the cross-regional application from the source region to the target region. To address this limitation, this paper proposes a novel Cross-Regional Segmentation and Counting framework (CRSC) that integrates the unsupervised Style Transfer Network (STNet) and dual task-based Segmentation Counting Network (SCNet) to perform simultaneous PG segmentation and counting across different regions. The STNet is adopted as a target-adaptive data augmentation strategy to generate fake training samples from the source training samples. The SCNet is designed as a dual-task structure to perform the PG segmentation and PG counts simultaneously. Specifically, for each target region, we use the STNet to generate the fake training samples and then train a SCNet based on both source training samples and fake training samples. Subsequently, we leverage the trained SCNet to predict the segmentation and counting results of PGs, yielding the PG map and counting for each target region. The validation results on five target regions indicate that our proposed CRSC framework can achieve stable improvement in cross-regional segmentation and counting of PGs, especially in cases where the labeled samples in the source region are limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林好人完成签到 ,获得积分10
4秒前
bunny完成签到,获得积分10
6秒前
LeoBigman完成签到 ,获得积分10
7秒前
小白完成签到 ,获得积分10
9秒前
13秒前
14秒前
geold完成签到,获得积分10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
joeqin完成签到,获得积分10
19秒前
19秒前
风秋千完成签到 ,获得积分10
21秒前
雪山飞龙完成签到,获得积分10
28秒前
30完成签到 ,获得积分10
30秒前
坏坏的快乐完成签到,获得积分10
34秒前
紫陌完成签到,获得积分0
43秒前
旅人完成签到 ,获得积分10
48秒前
纸条条完成签到 ,获得积分10
50秒前
kyt_vip完成签到,获得积分10
52秒前
wang完成签到,获得积分10
58秒前
peterlzb1234567完成签到,获得积分10
1分钟前
疯狂加载ing应助鲤鱼笑阳采纳,获得10
1分钟前
英勇海完成签到 ,获得积分10
1分钟前
mufulee完成签到,获得积分10
1分钟前
时光友岸完成签到,获得积分10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
2分钟前
程大大大教授完成签到,获得积分10
2分钟前
简爱完成签到 ,获得积分10
2分钟前
丢硬币的小孩完成签到,获得积分10
2分钟前
可了不得完成签到 ,获得积分10
2分钟前
LPPQBB应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
LPPQBB应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
LINDENG2004完成签到 ,获得积分10
2分钟前
沉静香氛完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293724
求助须知:如何正确求助?哪些是违规求助? 4443787
关于积分的说明 13831569
捐赠科研通 4327678
什么是DOI,文献DOI怎么找? 2375646
邀请新用户注册赠送积分活动 1370930
关于科研通互助平台的介绍 1335900