Cross-region plastic greenhouse segmentation and counting using the style transfer and dual-task networks

分割 计算机科学 人工智能 学习迁移 任务(项目管理) 杠杆(统计) 模式识别(心理学) 计算机视觉 工程类 系统工程
作者
Xiangyu Liu,Wei He,Hongyan Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:207: 107766-107766
标识
DOI:10.1016/j.compag.2023.107766
摘要

Plastic Greenhouse (PG) is a vital component of protected agriculture, that can enhance crop yields and quality by altering the local microclimate conditions. Obtaining the number and distribution of PG based on high-resolution remote sensing images is important for agricultural policymaking. However, due to the variability and interconnection of PGs in high-resolution images, counting and mapping them accurately is challenging. In addition, variation in data distribution across regions restricts the reuse of the trained model beyond the study area, impeding the cross-regional application from the source region to the target region. To address this limitation, this paper proposes a novel Cross-Regional Segmentation and Counting framework (CRSC) that integrates the unsupervised Style Transfer Network (STNet) and dual task-based Segmentation Counting Network (SCNet) to perform simultaneous PG segmentation and counting across different regions. The STNet is adopted as a target-adaptive data augmentation strategy to generate fake training samples from the source training samples. The SCNet is designed as a dual-task structure to perform the PG segmentation and PG counts simultaneously. Specifically, for each target region, we use the STNet to generate the fake training samples and then train a SCNet based on both source training samples and fake training samples. Subsequently, we leverage the trained SCNet to predict the segmentation and counting results of PGs, yielding the PG map and counting for each target region. The validation results on five target regions indicate that our proposed CRSC framework can achieve stable improvement in cross-regional segmentation and counting of PGs, especially in cases where the labeled samples in the source region are limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
延续发布了新的文献求助10
刚刚
刚刚
nancylan应助kagaminelen采纳,获得10
刚刚
夫子1987发布了新的文献求助10
刚刚
GuoYongXu发布了新的文献求助10
刚刚
刘丽梅完成签到 ,获得积分0
1秒前
1秒前
1秒前
2秒前
2秒前
研友_VZG7GZ应助文静修杰采纳,获得10
2秒前
3秒前
Jasper应助活泼的飞扬采纳,获得10
5秒前
5秒前
zww发布了新的文献求助10
5秒前
5秒前
爱你的心完成签到 ,获得积分10
5秒前
6秒前
glq发布了新的文献求助10
6秒前
有点甜发布了新的文献求助10
6秒前
新1完成签到,获得积分10
7秒前
研友_Zr53an完成签到,获得积分10
7秒前
zlzl完成签到 ,获得积分10
7秒前
Jackson发布了新的文献求助10
8秒前
星辰大海应助黄叶飞采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
lungfiga发布了新的文献求助30
10秒前
10秒前
chen完成签到 ,获得积分10
10秒前
搜集达人应助个性的荆采纳,获得10
11秒前
无花果应助zzzkk采纳,获得10
11秒前
11秒前
风趣紫发布了新的文献求助10
11秒前
12秒前
半夏完成签到,获得积分10
12秒前
12秒前
GuoYongXu完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352940
求助须知:如何正确求助?哪些是违规求助? 4485618
关于积分的说明 13963907
捐赠科研通 4385768
什么是DOI,文献DOI怎么找? 2409561
邀请新用户注册赠送积分活动 1401897
关于科研通互助平台的介绍 1375605