Improved Neurophysiological Process Imaging Through Optimization of Kalman Filter Initial Conditions

初始化 计算机科学 卡尔曼滤波器 脑磁图 神经生理学 滤波器(信号处理) 最优化问题 算法 人工智能 计算机视觉 脑电图 心理学 生物 精神科 神经科学 程序设计语言
作者
Yun Zhao,Phuc Luong,Simon Teshuva,Andria Pelentritou,Woods William,David T. J. Liley,Daniel F. Schmidt,Mario Boley,Levin Kuhlmann
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (05) 被引量:2
标识
DOI:10.1142/s0129065723500247
摘要

Recent work presented a framework for space-time-resolved neurophysiological process imaging that augments existing electromagnetic source imaging techniques. In particular, a nonlinear Analytic Kalman filter (AKF) has been developed to efficiently infer the states and parameters of neural mass models believed to underlie the generation of electromagnetic source currents. Unfortunately, as the initialization determines the performance of the Kalman filter, and the ground truth is typically unavailable for initialization, this framework might produce suboptimal results unless significant effort is spent on tuning the initialization. Notably, the relation between the initialization and overall filter performance is only given implicitly and is expensive to evaluate; implying that conventional optimization techniques, e.g. gradient or sampling based, are inapplicable. To address this problem, a novel efficient framework based on blackbox optimization has been developed to find the optimal initialization by reducing the signal prediction error. Multiple state-of-the-art optimization methods were compared and distinctively, Gaussian process optimization decreased the objective function by 82.1% and parameter estimation error by 62.5% on average with the simulation data compared to no optimization applied. The framework took only 1.6[Formula: see text]h and reduced the objective function by an average of 13.2% on 3.75[Formula: see text]min 4714-source channel magnetoencephalography data. This yields an improved method of neurophysiological process imaging that can be used to uncover complex underpinnings of brain dynamics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
这么年轻压根睡不着完成签到 ,获得积分10
1秒前
3秒前
辰辰发布了新的文献求助50
3秒前
丘比特应助space采纳,获得10
3秒前
卓儿发布了新的文献求助10
3秒前
3秒前
zz完成签到 ,获得积分10
4秒前
5秒前
6秒前
欣喜亚男完成签到,获得积分10
6秒前
pipi完成签到,获得积分10
6秒前
JJ完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
sun发布了新的文献求助10
9秒前
10秒前
SciGPT应助活力芷天采纳,获得10
10秒前
callmefather完成签到 ,获得积分10
10秒前
Lucas应助风中的觅儿采纳,获得10
11秒前
李健的小迷弟应助卿筠采纳,获得10
11秒前
12秒前
红莲墨生发布了新的文献求助10
12秒前
迷路尔曼发布了新的文献求助10
13秒前
梁可可发布了新的文献求助10
13秒前
13秒前
lxy发布了新的文献求助10
14秒前
lindoudou发布了新的文献求助10
17秒前
田様应助卓儿采纳,获得10
17秒前
ys发布了新的文献求助10
17秒前
长乐完成签到,获得积分10
17秒前
space发布了新的文献求助10
18秒前
高高的远山完成签到,获得积分10
19秒前
20秒前
liu完成签到,获得积分10
21秒前
21秒前
liangshuang发布了新的文献求助10
23秒前
微笑发布了新的文献求助10
23秒前
24秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525973
求助须知:如何正确求助?哪些是违规求助? 3106420
关于积分的说明 9280254
捐赠科研通 2804049
什么是DOI,文献DOI怎么找? 1539151
邀请新用户注册赠送积分活动 716511
科研通“疑难数据库(出版商)”最低求助积分说明 709462