SC-Unext: A Lightweight Image Segmentation Model with Cellular Mechanism for Breast Ultrasound Tumor Diagnosis

计算机科学 分割 乳腺超声检查 编码器 人工智能 图像分割 推论 模式识别(心理学) 计算机视觉 乳腺癌 乳腺摄影术 癌症 医学 内科学 操作系统
作者
Fenglin Cai,Jiaying Wen,Fangzhou He,Yulong Xia,Weijun Xu,Yong Zhang,Li Jiang,Jie Li
标识
DOI:10.1007/s10278-024-01042-9
摘要

Automatic breast ultrasound image segmentation plays an important role in medical image processing. However, current methods for breast ultrasound segmentation suffer from high computational complexity and large model parameters, particularly when dealing with complex images. In this paper, we take the Unext network as a basis and utilize its encoder-decoder features. And taking inspiration from the mechanisms of cellular apoptosis and division, we design apoptosis and division algorithms to improve model performance. We propose a novel segmentation model which integrates the division and apoptosis algorithms and introduces spatial and channel convolution blocks into the model. Our proposed model not only improves the segmentation performance of breast ultrasound tumors, but also reduces the model parameters and computational resource consumption time. The model was evaluated on the breast ultrasound image dataset and our collected dataset. The experiments show that the SC-Unext model achieved Dice scores of 75.29% and accuracy of 97.09% on the BUSI dataset, and on the collected dataset, it reached Dice scores of 90.62% and accuracy of 98.37%. Meanwhile, we conducted a comparison of the model's inference speed on CPUs to verify its efficiency in resource-constrained environments. The results indicated that the SC-Unext model achieved an inference speed of 92.72 ms per instance on devices equipped only with CPUs. The model's number of parameters and computational resource consumption are 1.46M and 2.13 GFlops, respectively, which are lower compared to other network models. Due to its lightweight nature, the model holds significant value for various practical applications in the medical field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一直向前发布了新的文献求助10
1秒前
End完成签到 ,获得积分10
2秒前
沉静的红酒完成签到,获得积分10
3秒前
yzxzdm完成签到 ,获得积分10
3秒前
Yara.H完成签到 ,获得积分10
3秒前
Meng完成签到,获得积分10
4秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
包容追命发布了新的文献求助10
10秒前
10秒前
梦鱼完成签到,获得积分10
11秒前
小林不熬夜完成签到,获得积分10
11秒前
玛卡巴卡完成签到,获得积分10
12秒前
希尔伯特发布了新的文献求助10
14秒前
Jasper应助dailyyang采纳,获得10
14秒前
冬凌草完成签到 ,获得积分10
14秒前
阿若完成签到,获得积分10
14秒前
英姑应助单纯冰棍采纳,获得10
14秒前
高高从霜完成签到 ,获得积分10
15秒前
lmh011115完成签到,获得积分10
15秒前
包容追命完成签到,获得积分20
16秒前
zhenya完成签到,获得积分10
17秒前
xiang929完成签到 ,获得积分10
19秒前
小文子完成签到,获得积分10
19秒前
Mae完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
X欣完成签到,获得积分10
21秒前
lelele完成签到,获得积分10
21秒前
可爱的函函应助luxi0714采纳,获得10
23秒前
月儿完成签到 ,获得积分10
23秒前
小曾应助景清采纳,获得10
24秒前
24秒前
大力的忆霜完成签到,获得积分10
24秒前
贪玩大侠发布了新的文献求助10
25秒前
学不懂数学应助苹果沛柔采纳,获得10
25秒前
26秒前
万能图书馆应助玛卡巴卡采纳,获得10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048