SC-Unext: A Lightweight Image Segmentation Model with Cellular Mechanism for Breast Ultrasound Tumor Diagnosis

计算机科学 分割 乳腺超声检查 编码器 人工智能 图像分割 推论 模式识别(心理学) 计算机视觉 乳腺癌 乳腺摄影术 癌症 医学 操作系统 内科学
作者
Fenglin Cai,Jiaying Wen,Fangzhou He,Yulong Xia,Weijun Xu,Yong Zhang,Li Jiang,Jie Li
标识
DOI:10.1007/s10278-024-01042-9
摘要

Automatic breast ultrasound image segmentation plays an important role in medical image processing. However, current methods for breast ultrasound segmentation suffer from high computational complexity and large model parameters, particularly when dealing with complex images. In this paper, we take the Unext network as a basis and utilize its encoder-decoder features. And taking inspiration from the mechanisms of cellular apoptosis and division, we design apoptosis and division algorithms to improve model performance. We propose a novel segmentation model which integrates the division and apoptosis algorithms and introduces spatial and channel convolution blocks into the model. Our proposed model not only improves the segmentation performance of breast ultrasound tumors, but also reduces the model parameters and computational resource consumption time. The model was evaluated on the breast ultrasound image dataset and our collected dataset. The experiments show that the SC-Unext model achieved Dice scores of 75.29% and accuracy of 97.09% on the BUSI dataset, and on the collected dataset, it reached Dice scores of 90.62% and accuracy of 98.37%. Meanwhile, we conducted a comparison of the model's inference speed on CPUs to verify its efficiency in resource-constrained environments. The results indicated that the SC-Unext model achieved an inference speed of 92.72 ms per instance on devices equipped only with CPUs. The model's number of parameters and computational resource consumption are 1.46M and 2.13 GFlops, respectively, which are lower compared to other network models. Due to its lightweight nature, the model holds significant value for various practical applications in the medical field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助OYE采纳,获得10
1秒前
1秒前
李爱国应助热情的阿猫桑采纳,获得10
1秒前
1秒前
1秒前
花花完成签到,获得积分10
2秒前
无花果应助韭黄采纳,获得10
2秒前
啦某某发布了新的文献求助20
3秒前
cc发布了新的文献求助30
3秒前
5秒前
一颗苹果完成签到,获得积分10
5秒前
故意的傲玉应助小月采纳,获得10
6秒前
nicemice发布了新的文献求助10
6秒前
xtlx完成签到,获得积分10
6秒前
蓝桉完成签到,获得积分10
7秒前
执着的怜寒应助aaaabc采纳,获得20
7秒前
7秒前
花花发布了新的文献求助10
7秒前
万能图书馆应助白华苍松采纳,获得10
8秒前
孔大漂亮完成签到,获得积分10
9秒前
10秒前
打打应助HopeStar采纳,获得10
10秒前
10秒前
科研通AI5应助标致小伙采纳,获得30
10秒前
有风发布了新的文献求助10
10秒前
10秒前
路在脚下完成签到 ,获得积分10
10秒前
bkagyin应助GOODYUE采纳,获得10
11秒前
Jasper应助彩色的蓝天采纳,获得10
11秒前
詹严青发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
郭翔完成签到,获得积分10
12秒前
Yeong发布了新的文献求助10
13秒前
jh完成签到 ,获得积分10
13秒前
syq完成签到,获得积分10
14秒前
sfw完成签到,获得积分10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759