SC-Unext: A Lightweight Image Segmentation Model with Cellular Mechanism for Breast Ultrasound Tumor Diagnosis

计算机科学 分割 乳腺超声检查 编码器 人工智能 图像分割 推论 模式识别(心理学) 计算机视觉 乳腺癌 乳腺摄影术 癌症 医学 内科学 操作系统
作者
Fenglin Cai,Jiaying Wen,Fangzhou He,Yulong Xia,Weijun Xu,Yong Zhang,Li Jiang,Jie Li
标识
DOI:10.1007/s10278-024-01042-9
摘要

Automatic breast ultrasound image segmentation plays an important role in medical image processing. However, current methods for breast ultrasound segmentation suffer from high computational complexity and large model parameters, particularly when dealing with complex images. In this paper, we take the Unext network as a basis and utilize its encoder-decoder features. And taking inspiration from the mechanisms of cellular apoptosis and division, we design apoptosis and division algorithms to improve model performance. We propose a novel segmentation model which integrates the division and apoptosis algorithms and introduces spatial and channel convolution blocks into the model. Our proposed model not only improves the segmentation performance of breast ultrasound tumors, but also reduces the model parameters and computational resource consumption time. The model was evaluated on the breast ultrasound image dataset and our collected dataset. The experiments show that the SC-Unext model achieved Dice scores of 75.29% and accuracy of 97.09% on the BUSI dataset, and on the collected dataset, it reached Dice scores of 90.62% and accuracy of 98.37%. Meanwhile, we conducted a comparison of the model's inference speed on CPUs to verify its efficiency in resource-constrained environments. The results indicated that the SC-Unext model achieved an inference speed of 92.72 ms per instance on devices equipped only with CPUs. The model's number of parameters and computational resource consumption are 1.46M and 2.13 GFlops, respectively, which are lower compared to other network models. Due to its lightweight nature, the model holds significant value for various practical applications in the medical field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿瑞发布了新的文献求助10
刚刚
打打应助快乐科研采纳,获得10
刚刚
科研通AI5应助涂图采纳,获得30
1秒前
JamesPei应助wjx采纳,获得10
2秒前
danmoyjj发布了新的文献求助30
3秒前
辉月完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
庞鲂应助旷野采纳,获得20
5秒前
量子星尘发布了新的文献求助10
7秒前
bkagyin应助白立轩采纳,获得10
7秒前
7秒前
whale完成签到,获得积分10
8秒前
苦短完成签到,获得积分20
8秒前
9秒前
SUN发布了新的文献求助10
9秒前
西门问道完成签到,获得积分10
10秒前
小花花完成签到,获得积分10
10秒前
脑洞疼应助AI_S采纳,获得10
11秒前
11秒前
runner发布了新的文献求助10
11秒前
12秒前
hihi完成签到,获得积分10
12秒前
13秒前
生物民工完成签到,获得积分10
13秒前
pluto应助老朱采纳,获得10
14秒前
14秒前
mayberichard发布了新的文献求助10
14秒前
14秒前
15秒前
123发布了新的文献求助10
15秒前
15秒前
llllllll完成签到,获得积分10
17秒前
jzw完成签到,获得积分20
17秒前
dorothy_meng完成签到,获得积分10
17秒前
18秒前
18秒前
羊花花发布了新的文献求助20
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298