计算机科学
分割
乳腺超声检查
编码器
人工智能
图像分割
推论
模式识别(心理学)
计算机视觉
乳腺癌
乳腺摄影术
癌症
医学
内科学
操作系统
作者
Fenglin Cai,Jiaying Wen,Fangzhou He,Yulong Xia,Weijun Xu,Yong Zhang,Li Jiang,Jie Li
标识
DOI:10.1007/s10278-024-01042-9
摘要
Automatic breast ultrasound image segmentation plays an important role in medical image processing. However, current methods for breast ultrasound segmentation suffer from high computational complexity and large model parameters, particularly when dealing with complex images. In this paper, we take the Unext network as a basis and utilize its encoder-decoder features. And taking inspiration from the mechanisms of cellular apoptosis and division, we design apoptosis and division algorithms to improve model performance. We propose a novel segmentation model which integrates the division and apoptosis algorithms and introduces spatial and channel convolution blocks into the model. Our proposed model not only improves the segmentation performance of breast ultrasound tumors, but also reduces the model parameters and computational resource consumption time. The model was evaluated on the breast ultrasound image dataset and our collected dataset. The experiments show that the SC-Unext model achieved Dice scores of 75.29% and accuracy of 97.09% on the BUSI dataset, and on the collected dataset, it reached Dice scores of 90.62% and accuracy of 98.37%. Meanwhile, we conducted a comparison of the model's inference speed on CPUs to verify its efficiency in resource-constrained environments. The results indicated that the SC-Unext model achieved an inference speed of 92.72 ms per instance on devices equipped only with CPUs. The model's number of parameters and computational resource consumption are 1.46M and 2.13 GFlops, respectively, which are lower compared to other network models. Due to its lightweight nature, the model holds significant value for various practical applications in the medical field.
科研通智能强力驱动
Strongly Powered by AbleSci AI