SC-Unext: A Lightweight Image Segmentation Model with Cellular Mechanism for Breast Ultrasound Tumor Diagnosis

计算机科学 分割 乳腺超声检查 编码器 人工智能 图像分割 推论 模式识别(心理学) 计算机视觉 乳腺癌 乳腺摄影术 癌症 医学 内科学 操作系统
作者
Fenglin Cai,Jiaying Wen,Fangzhou He,Yulong Xia,Weijun Xu,Yong Zhang,Li Jiang,Jie Li
标识
DOI:10.1007/s10278-024-01042-9
摘要

Automatic breast ultrasound image segmentation plays an important role in medical image processing. However, current methods for breast ultrasound segmentation suffer from high computational complexity and large model parameters, particularly when dealing with complex images. In this paper, we take the Unext network as a basis and utilize its encoder-decoder features. And taking inspiration from the mechanisms of cellular apoptosis and division, we design apoptosis and division algorithms to improve model performance. We propose a novel segmentation model which integrates the division and apoptosis algorithms and introduces spatial and channel convolution blocks into the model. Our proposed model not only improves the segmentation performance of breast ultrasound tumors, but also reduces the model parameters and computational resource consumption time. The model was evaluated on the breast ultrasound image dataset and our collected dataset. The experiments show that the SC-Unext model achieved Dice scores of 75.29% and accuracy of 97.09% on the BUSI dataset, and on the collected dataset, it reached Dice scores of 90.62% and accuracy of 98.37%. Meanwhile, we conducted a comparison of the model's inference speed on CPUs to verify its efficiency in resource-constrained environments. The results indicated that the SC-Unext model achieved an inference speed of 92.72 ms per instance on devices equipped only with CPUs. The model's number of parameters and computational resource consumption are 1.46M and 2.13 GFlops, respectively, which are lower compared to other network models. Due to its lightweight nature, the model holds significant value for various practical applications in the medical field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐小子发布了新的文献求助10
刚刚
刚刚
2Q完成签到,获得积分10
刚刚
知了完成签到,获得积分10
1秒前
大胆诗云完成签到,获得积分10
1秒前
Stella应助工作还是工作采纳,获得10
1秒前
尊敬远山完成签到,获得积分20
1秒前
c445507405完成签到 ,获得积分10
1秒前
缥缈芷珍完成签到,获得积分10
1秒前
细腻的冷安完成签到,获得积分10
2秒前
2秒前
小施读研发布了新的文献求助10
2秒前
木木完成签到 ,获得积分10
2秒前
欢喜的汽车完成签到,获得积分10
2秒前
漂泊完成签到,获得积分10
2秒前
2秒前
xrkxrk完成签到 ,获得积分0
3秒前
OK完成签到,获得积分10
3秒前
zj发布了新的文献求助10
3秒前
dsfsd完成签到,获得积分10
3秒前
Stella应助zik采纳,获得10
3秒前
bkagyin应助温暖芒果采纳,获得10
3秒前
3秒前
Ysdanz完成签到,获得积分10
3秒前
4秒前
雪sung完成签到,获得积分10
4秒前
蒋鹏煊完成签到,获得积分10
4秒前
脑洞疼应助mhbknight采纳,获得10
4秒前
温茶青盏完成签到,获得积分10
4秒前
合适怜南发布了新的文献求助10
5秒前
shlin完成签到,获得积分10
5秒前
whuhustwit发布了新的文献求助10
5秒前
wq完成签到,获得积分10
6秒前
6秒前
研友_Z33zkZ完成签到,获得积分10
6秒前
今后应助nano_yan采纳,获得10
6秒前
gyyzj完成签到,获得积分20
6秒前
李萍萍发布了新的文献求助10
7秒前
流年发布了新的文献求助30
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997