Development of an Artificial Neural Network-Based Image Retrieval System for Lung Disease Classification and Identification

人工智能 计算机科学 鉴定(生物学) 人工神经网络 上下文图像分类 模式识别(心理学) 图像检索 机器学习 图像(数学) 生物 植物
作者
Atul Pratap Singh,Ajeet Singh,Ankit Kumar,Himanshu Agarwal,Saumya Yadav,Mohit Gupta
标识
DOI:10.3390/engproc2024062002
摘要

The rapid advancement of medical imaging technologies has propelled the development of automated systems for the identification and classification of lung diseases. This study presents the design and implementation of an innovative image retrieval system utilizing artificial neural networks (ANNs) to enhance the accuracy and efficiency of diagnosing lung diseases. The proposed system focuses on addressing the challenges associated with the accurate recognition and classification of lung diseases from medical images, such as X-rays and CT scans. Leveraging the capabilities of ANNs, specifically convolutional neural networks (CNNs), the system aims to capture intricate patterns and features within images that are often imperceptible to human observers. This enables the system to learn discriminative representations of normal lung anatomy and various disease manifestations. The design of the system involves multiple stages. Initially, a robust dataset of annotated lung images is curated, encompassing a diverse range of lung diseases and their corresponding healthy states. Subsequently, a pre-processing pipeline is implemented to standardize the images, ensuring consistent quality and facilitating feature extraction. The CNN architecture is then meticulously constructed, with attention to layer configurations, activation functions, and optimization algorithms to facilitate effective learning and classification. The system also incorporates image retrieval techniques, enabling the efficient searching and retrieval of relevant medical images from the database based on query inputs. This retrieval functionality assists medical practitioners in accessing similar cases for comparative analysis and reference, ultimately supporting accurate diagnosis and treatment planning. To evaluate the system’s performance, comprehensive experiments are conducted using benchmark datasets, and performance metrics such as accuracy, precision, recall, and F1-score are measured. The experimental results demonstrate the system’s capability to distinguish between various lung diseases and healthy states with a high degree of accuracy and reliability. The proposed system exhibits substantial potential in revolutionizing lung disease diagnosis by assisting medical professionals in making informed decisions and improving patient outcomes. This study presents a novel image retrieval system empowered by artificial neural networks for the identification and classification of lung diseases. By leveraging advanced deep learning techniques, the system showcases promising results in automating the diagnosis process, facilitating the efficient retrieval of relevant medical images, and thereby contributing to the advancement of pulmonary healthcare practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
碧蓝初丹发布了新的文献求助30
1秒前
wuwu完成签到,获得积分10
1秒前
自由飞阳完成签到,获得积分10
1秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Min发布了新的文献求助10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
狂野飞瑶应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
NPC应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
NPC应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得30
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
star009完成签到,获得积分10
4秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
duke完成签到,获得积分10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
科研通AI2S应助妮儿采纳,获得10
5秒前
慕青应助Lizhe采纳,获得10
6秒前
Lucas应助成就的南霜采纳,获得10
6秒前
Green完成签到,获得积分10
7秒前
风车完成签到,获得积分10
7秒前
7秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054832
求助须知:如何正确求助?哪些是违规求助? 2711702
关于积分的说明 7427649
捐赠科研通 2356261
什么是DOI,文献DOI怎么找? 1247983
科研通“疑难数据库(出版商)”最低求助积分说明 606566
版权声明 596083