Development of an Artificial Neural Network-Based Image Retrieval System for Lung Disease Classification and Identification

人工智能 计算机科学 鉴定(生物学) 人工神经网络 上下文图像分类 模式识别(心理学) 图像检索 机器学习 图像(数学) 生物 植物
作者
Atul Pratap Singh,Ajeet Singh,Ankit Kumar,Himanshu Agarwal,Saumya Yadav,Mohit Gupta
标识
DOI:10.3390/engproc2024062002
摘要

The rapid advancement of medical imaging technologies has propelled the development of automated systems for the identification and classification of lung diseases. This study presents the design and implementation of an innovative image retrieval system utilizing artificial neural networks (ANNs) to enhance the accuracy and efficiency of diagnosing lung diseases. The proposed system focuses on addressing the challenges associated with the accurate recognition and classification of lung diseases from medical images, such as X-rays and CT scans. Leveraging the capabilities of ANNs, specifically convolutional neural networks (CNNs), the system aims to capture intricate patterns and features within images that are often imperceptible to human observers. This enables the system to learn discriminative representations of normal lung anatomy and various disease manifestations. The design of the system involves multiple stages. Initially, a robust dataset of annotated lung images is curated, encompassing a diverse range of lung diseases and their corresponding healthy states. Subsequently, a pre-processing pipeline is implemented to standardize the images, ensuring consistent quality and facilitating feature extraction. The CNN architecture is then meticulously constructed, with attention to layer configurations, activation functions, and optimization algorithms to facilitate effective learning and classification. The system also incorporates image retrieval techniques, enabling the efficient searching and retrieval of relevant medical images from the database based on query inputs. This retrieval functionality assists medical practitioners in accessing similar cases for comparative analysis and reference, ultimately supporting accurate diagnosis and treatment planning. To evaluate the system’s performance, comprehensive experiments are conducted using benchmark datasets, and performance metrics such as accuracy, precision, recall, and F1-score are measured. The experimental results demonstrate the system’s capability to distinguish between various lung diseases and healthy states with a high degree of accuracy and reliability. The proposed system exhibits substantial potential in revolutionizing lung disease diagnosis by assisting medical professionals in making informed decisions and improving patient outcomes. This study presents a novel image retrieval system empowered by artificial neural networks for the identification and classification of lung diseases. By leveraging advanced deep learning techniques, the system showcases promising results in automating the diagnosis process, facilitating the efficient retrieval of relevant medical images, and thereby contributing to the advancement of pulmonary healthcare practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助可爱丹烟采纳,获得10
1秒前
Yjj发布了新的文献求助10
1秒前
白石杏完成签到,获得积分10
1秒前
1秒前
桃花源的瓶起子完成签到,获得积分10
2秒前
3秒前
4秒前
Windfall发布了新的文献求助10
4秒前
可可酱完成签到,获得积分10
5秒前
A拉拉拉完成签到,获得积分10
5秒前
glockie关注了科研通微信公众号
5秒前
九里笙发布了新的文献求助30
6秒前
6秒前
欣欣子完成签到 ,获得积分10
6秒前
贪玩语蓉完成签到,获得积分10
6秒前
舒心的怜翠完成签到 ,获得积分10
6秒前
7秒前
babe应助熊猫爱豆浆采纳,获得10
8秒前
WindDreamer完成签到,获得积分10
8秒前
8秒前
云隐完成签到,获得积分10
8秒前
吃水果的老虎完成签到,获得积分10
8秒前
8秒前
重要羊发布了新的文献求助10
9秒前
东皇太一完成签到,获得积分10
10秒前
11秒前
tY完成签到,获得积分10
11秒前
幸福糖豆完成签到,获得积分10
11秒前
Bsisoy完成签到,获得积分10
11秒前
英俊的铭应助wlei采纳,获得10
12秒前
ALpha完成签到 ,获得积分10
12秒前
Cathy发布了新的文献求助10
13秒前
小曹发布了新的文献求助10
13秒前
朴素的雨筠完成签到,获得积分10
13秒前
科研一路绿灯完成签到,获得积分10
13秒前
14秒前
1222333完成签到,获得积分10
14秒前
包容新蕾完成签到 ,获得积分10
14秒前
fool完成签到,获得积分10
14秒前
smj完成签到,获得积分10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249108
求助须知:如何正确求助?哪些是违规求助? 2892426
关于积分的说明 8271779
捐赠科研通 2560741
什么是DOI,文献DOI怎么找? 1389228
科研通“疑难数据库(出版商)”最低求助积分说明 651047
邀请新用户注册赠送积分活动 627873