已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of an Artificial Neural Network-Based Image Retrieval System for Lung Disease Classification and Identification

人工智能 计算机科学 鉴定(生物学) 人工神经网络 上下文图像分类 模式识别(心理学) 图像检索 机器学习 图像(数学) 生物 植物
作者
Atul Pratap Singh,Ajeet Singh,Ankit Kumar,Himanshu Agarwal,Saumya Yadav,Mohit Gupta
标识
DOI:10.3390/engproc2024062002
摘要

The rapid advancement of medical imaging technologies has propelled the development of automated systems for the identification and classification of lung diseases. This study presents the design and implementation of an innovative image retrieval system utilizing artificial neural networks (ANNs) to enhance the accuracy and efficiency of diagnosing lung diseases. The proposed system focuses on addressing the challenges associated with the accurate recognition and classification of lung diseases from medical images, such as X-rays and CT scans. Leveraging the capabilities of ANNs, specifically convolutional neural networks (CNNs), the system aims to capture intricate patterns and features within images that are often imperceptible to human observers. This enables the system to learn discriminative representations of normal lung anatomy and various disease manifestations. The design of the system involves multiple stages. Initially, a robust dataset of annotated lung images is curated, encompassing a diverse range of lung diseases and their corresponding healthy states. Subsequently, a pre-processing pipeline is implemented to standardize the images, ensuring consistent quality and facilitating feature extraction. The CNN architecture is then meticulously constructed, with attention to layer configurations, activation functions, and optimization algorithms to facilitate effective learning and classification. The system also incorporates image retrieval techniques, enabling the efficient searching and retrieval of relevant medical images from the database based on query inputs. This retrieval functionality assists medical practitioners in accessing similar cases for comparative analysis and reference, ultimately supporting accurate diagnosis and treatment planning. To evaluate the system’s performance, comprehensive experiments are conducted using benchmark datasets, and performance metrics such as accuracy, precision, recall, and F1-score are measured. The experimental results demonstrate the system’s capability to distinguish between various lung diseases and healthy states with a high degree of accuracy and reliability. The proposed system exhibits substantial potential in revolutionizing lung disease diagnosis by assisting medical professionals in making informed decisions and improving patient outcomes. This study presents a novel image retrieval system empowered by artificial neural networks for the identification and classification of lung diseases. By leveraging advanced deep learning techniques, the system showcases promising results in automating the diagnosis process, facilitating the efficient retrieval of relevant medical images, and thereby contributing to the advancement of pulmonary healthcare practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净翠完成签到,获得积分20
1秒前
桐桐应助豆豆可采纳,获得10
2秒前
4秒前
单薄怜寒完成签到 ,获得积分10
4秒前
查莉完成签到,获得积分20
6秒前
7秒前
whou发布了新的文献求助10
9秒前
科研通AI6应助标致的如豹采纳,获得30
11秒前
12秒前
12秒前
cd发布了新的文献求助10
13秒前
muyouwifi发布了新的文献求助10
14秒前
豆豆可发布了新的文献求助10
16秒前
菜鸡游泳发布了新的文献求助20
17秒前
21秒前
丘比特应助Liuruijia采纳,获得10
22秒前
哦哦哦完成签到 ,获得积分10
23秒前
香蕉觅云应助小小梅西采纳,获得10
23秒前
云影箫羽完成签到 ,获得积分10
24秒前
jimmyhui完成签到,获得积分10
25秒前
hhww发布了新的文献求助10
25秒前
26秒前
你的猫耳wow完成签到,获得积分10
26秒前
Mark完成签到 ,获得积分10
26秒前
klandcy完成签到,获得积分10
26秒前
药学牛马发布了新的文献求助10
27秒前
大模型应助卡普空的锋刃采纳,获得10
27秒前
30秒前
hmhu完成签到,获得积分10
30秒前
30秒前
香蕉觅云应助wls200178采纳,获得10
30秒前
30秒前
31秒前
微风完成签到 ,获得积分10
32秒前
张不张完成签到,获得积分20
32秒前
33秒前
34秒前
cd完成签到,获得积分10
35秒前
hmhu发布了新的文献求助10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4609957
求助须知:如何正确求助?哪些是违规求助? 4016141
关于积分的说明 12434394
捐赠科研通 3697550
什么是DOI,文献DOI怎么找? 2038844
邀请新用户注册赠送积分活动 1071812
科研通“疑难数据库(出版商)”最低求助积分说明 955502