Development of an Artificial Neural Network-Based Image Retrieval System for Lung Disease Classification and Identification

人工智能 计算机科学 鉴定(生物学) 人工神经网络 上下文图像分类 模式识别(心理学) 图像检索 机器学习 图像(数学) 生物 植物
作者
Atul Pratap Singh,Ajeet Singh,Ankit Kumar,Himanshu Agarwal,Saumya Yadav,Mohit Gupta
标识
DOI:10.3390/engproc2024062002
摘要

The rapid advancement of medical imaging technologies has propelled the development of automated systems for the identification and classification of lung diseases. This study presents the design and implementation of an innovative image retrieval system utilizing artificial neural networks (ANNs) to enhance the accuracy and efficiency of diagnosing lung diseases. The proposed system focuses on addressing the challenges associated with the accurate recognition and classification of lung diseases from medical images, such as X-rays and CT scans. Leveraging the capabilities of ANNs, specifically convolutional neural networks (CNNs), the system aims to capture intricate patterns and features within images that are often imperceptible to human observers. This enables the system to learn discriminative representations of normal lung anatomy and various disease manifestations. The design of the system involves multiple stages. Initially, a robust dataset of annotated lung images is curated, encompassing a diverse range of lung diseases and their corresponding healthy states. Subsequently, a pre-processing pipeline is implemented to standardize the images, ensuring consistent quality and facilitating feature extraction. The CNN architecture is then meticulously constructed, with attention to layer configurations, activation functions, and optimization algorithms to facilitate effective learning and classification. The system also incorporates image retrieval techniques, enabling the efficient searching and retrieval of relevant medical images from the database based on query inputs. This retrieval functionality assists medical practitioners in accessing similar cases for comparative analysis and reference, ultimately supporting accurate diagnosis and treatment planning. To evaluate the system’s performance, comprehensive experiments are conducted using benchmark datasets, and performance metrics such as accuracy, precision, recall, and F1-score are measured. The experimental results demonstrate the system’s capability to distinguish between various lung diseases and healthy states with a high degree of accuracy and reliability. The proposed system exhibits substantial potential in revolutionizing lung disease diagnosis by assisting medical professionals in making informed decisions and improving patient outcomes. This study presents a novel image retrieval system empowered by artificial neural networks for the identification and classification of lung diseases. By leveraging advanced deep learning techniques, the system showcases promising results in automating the diagnosis process, facilitating the efficient retrieval of relevant medical images, and thereby contributing to the advancement of pulmonary healthcare practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助喵呜采纳,获得10
1秒前
星辰完成签到,获得积分10
2秒前
桐桐应助npicco采纳,获得10
2秒前
2秒前
ZZ发布了新的文献求助10
3秒前
朴实初夏完成签到 ,获得积分10
5秒前
思源应助姚华采纳,获得10
5秒前
朱朱完成签到 ,获得积分10
5秒前
李沐唅发布了新的文献求助10
6秒前
6秒前
CipherSage应助雨纷纷采纳,获得10
6秒前
李爱国应助xy采纳,获得10
7秒前
Wanniey完成签到,获得积分20
8秒前
wanci应助灵巧妙柏采纳,获得10
11秒前
hhhh完成签到,获得积分10
12秒前
12秒前
NexusExplorer应助爱笑小笼包采纳,获得10
13秒前
14秒前
常温完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
咎淇完成签到,获得积分10
16秒前
16秒前
16秒前
壮观香之完成签到 ,获得积分10
17秒前
思源应助小王同学搞学术采纳,获得10
17秒前
sasa完成签到,获得积分10
18秒前
blangel完成签到,获得积分10
18秒前
瓜瓜发布了新的文献求助10
19秒前
20秒前
21秒前
大个应助Luo采纳,获得10
21秒前
2jz发布了新的文献求助10
22秒前
小蘑菇应助123采纳,获得10
22秒前
woxiangbiye发布了新的文献求助10
23秒前
燕尔蓝完成签到,获得积分10
24秒前
朴实的秋完成签到,获得积分10
24秒前
俊秀的芫发布了新的文献求助30
25秒前
达达尼尔发布了新的文献求助10
26秒前
奋斗迎波发布了新的文献求助10
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980224
求助须知:如何正确求助?哪些是违规求助? 3524191
关于积分的说明 11220260
捐赠科研通 3261653
什么是DOI,文献DOI怎么找? 1800792
邀请新用户注册赠送积分活动 879296
科研通“疑难数据库(出版商)”最低求助积分说明 807232