Transformer-Aided Deep Double Dueling Spatial-Temporal Q-Network for Spatial Crowdsourcing Analysis

众包 计算机科学 任务(项目管理) 空间分析 互联网 数据挖掘 人工智能 机器学习 实时计算 数据科学 万维网 地理 工程类 遥感 系统工程
作者
Yu Li,Mingxiao Li,Dongyang Ou,Junjie Guo,Fangyuan Pan
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Tech Science Press]
卷期号:139 (1): 893-909
标识
DOI:10.32604/cmes.2023.031350
摘要

With the rapid development of mobile Internet, spatial crowdsourcing has become more and more popular. Spatial crowdsourcing consists of many different types of applications, such as spatial crowd-sensing services. In terms of spatial crowd-sensing, it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models. Besides collecting sensing data, spatial crowdsourcing also includes spatial delivery services like DiDi and Uber. Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications. Previous research conducted task assignments via traditional matching approaches or using simple network models. However, advanced mining methods are lacking to explore the relationship between workers, task publishers, and the spatio-temporal attributes in tasks. Therefore, in this paper, we propose a Deep Double Dueling Spatial-temporal Q Network (D3SQN) to adaptively learn the spatial-temporal relationship between task, task publishers, and workers in a dynamic environment to achieve optimal allocation. Specifically, D3SQN is revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments. Extensive experiments are conducted over real data collected from DiDi and ELM, and the simulation results verify the effectiveness of our proposed models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小逗逗n号发布了新的文献求助10
刚刚
1秒前
Violet发布了新的文献求助10
1秒前
1秒前
杨馨蕊完成签到 ,获得积分10
2秒前
南山有只大肥羊完成签到,获得积分10
2秒前
Manana完成签到 ,获得积分10
2秒前
CipherSage应助黎明之前采纳,获得10
2秒前
3秒前
海豚完成签到,获得积分10
3秒前
小马甲应助药宫采纳,获得10
3秒前
燕燕发布了新的文献求助10
3秒前
3秒前
3秒前
Active发布了新的文献求助10
3秒前
H哈发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
gi发布了新的文献求助10
5秒前
黑摄会阿Fay完成签到,获得积分10
5秒前
传奇3应助了111采纳,获得10
5秒前
6秒前
wu完成签到,获得积分10
6秒前
舒适的平蓝完成签到,获得积分10
6秒前
6秒前
共享精神应助好困采纳,获得30
6秒前
阿乔发布了新的文献求助10
6秒前
陈隆发布了新的文献求助10
8秒前
8秒前
bjr发布了新的文献求助10
8秒前
8秒前
大个应助轻咏采纳,获得10
8秒前
10秒前
充电宝应助Rando采纳,获得10
11秒前
rock发布了新的文献求助10
11秒前
仲晓山发布了新的文献求助10
11秒前
调皮的涵易完成签到,获得积分10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970287
求助须知:如何正确求助?哪些是违规求助? 3515034
关于积分的说明 11176923
捐赠科研通 3250301
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805039