SurfDock is a Surface-Informed Diffusion Generative Model for Reliable and Accurate Protein-ligand Complex Prediction

计算机科学 生成语法 人工智能 概化理论 蛋白质配体 机器学习 数学 化学 统计 有机化学
作者
Duanhua Cao,Mingan Chen,Runze Zhang,Jie Yu,Xinyu Jiang,Zhehuan Fan,Wei Zhang,Mingyue Zheng
标识
DOI:10.1101/2023.12.13.571408
摘要

ABSTRACT In the field of structure-based drug design, accurately predicting the binding conformation of ligands to proteins is a long-standing objective. Despite recent advances in deep learning yielding various methods for predicting protein-ligand complex structures, these AI-driven approaches frequently fall short of traditional docking methods in practice and often yield structures that lack physical and chemical plausibility. To overcome these limitations, we present SurfDock, an advanced geometric diffusion network, distinguished by its ability to integrate multiple protein representations including protein sequence, three-dimensional structural graphs, and surface-level details into its equivariant architecture. SurfDock employs a generative diffusion model on a non-Euclidean manifold, enabling precise optimization of molecular translations, rotations, and torsions for reliable binding poses generation. Complemented by a mixture density network for scoring using the same comprehensive representation, SurfDock achieves significantly improved docking success rates over all existing methods, excelling in both accuracy and adherence to physical constraints. Equipped with post-docking energy minimization as an optional feature, the plausibility of generated poses is further enhanced. Importantly, SurfDock demonstrates excellent generalizability to unseen proteins and extensibility to virtual screening tasks with state-of-the-art performance. We consider it a transformative contribution that could serve as an invaluable asset in structure-based drug design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张德美发布了新的文献求助10
2秒前
2秒前
2秒前
ZAy4gG完成签到,获得积分10
4秒前
5秒前
JamesPei应助ryan采纳,获得10
5秒前
7秒前
国郭发布了新的文献求助10
7秒前
赘婿应助理li采纳,获得10
8秒前
落晨发布了新的文献求助10
9秒前
11秒前
张德美完成签到,获得积分10
11秒前
15秒前
17秒前
18秒前
18秒前
18秒前
18秒前
冷酷似风发布了新的文献求助10
19秒前
19秒前
活力的以蕊完成签到,获得积分10
19秒前
小鱼吐泡泡完成签到,获得积分10
21秒前
22秒前
苏哲发布了新的文献求助10
22秒前
GT发布了新的文献求助10
23秒前
ryan发布了新的文献求助10
24秒前
24秒前
朱博发布了新的文献求助10
28秒前
move完成签到,获得积分10
28秒前
forstudy完成签到 ,获得积分10
29秒前
GT完成签到,获得积分10
30秒前
32秒前
32秒前
34秒前
Lucas应助ryan采纳,获得10
34秒前
共享精神应助快乐映雁采纳,获得30
35秒前
丸子鱼完成签到 ,获得积分10
35秒前
36秒前
Misssisi完成签到,获得积分10
37秒前
12345发布了新的文献求助10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299957
求助须知:如何正确求助?哪些是违规求助? 2934810
关于积分的说明 8470613
捐赠科研通 2608363
什么是DOI,文献DOI怎么找? 1424166
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645611