Hybrid model of tensor sparse representation and total variation regularization for image denoising

数学 结构张量 全变差去噪 正规化(语言学) 张量(固有定义) 算法 降噪 稀疏逼近 人工智能 模式识别(心理学) 数学优化 计算机科学 图像(数学) 纯数学
作者
Kai Deng,You‐Wei Wen,Kexin Li,Juan Zhang
出处
期刊:Signal Processing [Elsevier BV]
卷期号:217: 109352-109352 被引量:4
标识
DOI:10.1016/j.sigpro.2023.109352
摘要

The method based on non-local self-similarity patches has been widely applied in image denoising. For a given image patch, there are similar image patches at neighbor windows in the image. Traditionally, similar patches are vectorized and then rearranged into a matrix, which should have a low rank. Hence the denoising problem can be reformulated into a low rank recovery problem. However, the vectorization process can disrupt the spatial relationships among the patches. To improve this drawback, we rearrange the similar patches into a tensor to keep the spatial relationships. When the higher-order singular value decomposition (HOSVD) is applied to this tensor, the resulting core tensor should be sparse. In this paper, the sparse property of the core tensor is utilized to characterize similar patches, and then an optimization model is derived. Since the commonly used l0 norm regularization is NP-hard, we adopt the MCP function to constrain the sparse property of the core tensor. In addition, a total variation (TV) regularization term for the tensor is added to the model to preserve structural information in the image such as edges. Using the dual form to represent the total variation regularization and transforming the original problem into a saddle point problem, the primal–dual algorithm is applied to overcome the non-differentiability of the TV regularization. Finally, experimental results demonstrate that compared to existing denoising methods, the method proposed can better preserve details and structural information in the image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
易安发布了新的文献求助30
2秒前
ELend完成签到,获得积分10
3秒前
3秒前
Sun发布了新的文献求助10
3秒前
laowang完成签到,获得积分10
3秒前
fujun完成签到,获得积分10
4秒前
4秒前
zyx发布了新的文献求助10
4秒前
夜半发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助DJ采纳,获得10
4秒前
莫燕梦完成签到,获得积分10
5秒前
6秒前
6秒前
YY完成签到 ,获得积分10
7秒前
Hepatology发布了新的文献求助10
7秒前
绿色的yu完成签到 ,获得积分10
7秒前
7秒前
fgjkl完成签到 ,获得积分10
8秒前
8秒前
9秒前
zyw完成签到,获得积分10
9秒前
9秒前
香蕉觅云应助岗岗采纳,获得10
9秒前
害羞安荷发布了新的文献求助30
9秒前
小飞侠完成签到,获得积分10
9秒前
海风发布了新的文献求助20
10秒前
11秒前
cool发布了新的文献求助10
12秒前
所所应助搞怪半烟采纳,获得10
12秒前
小汤圆发布了新的文献求助10
12秒前
12秒前
陈博士发布了新的文献求助10
12秒前
medlive2020完成签到,获得积分10
12秒前
13秒前
chenmeimei2012完成签到 ,获得积分10
13秒前
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650