Hybrid model of tensor sparse representation and total variation regularization for image denoising

数学 结构张量 全变差去噪 正规化(语言学) 张量(固有定义) 算法 降噪 稀疏逼近 人工智能 模式识别(心理学) 数学优化 计算机科学 图像(数学) 纯数学
作者
Kai Deng,You‐Wei Wen,Kexin Li,Juan Zhang
出处
期刊:Signal Processing [Elsevier]
卷期号:217: 109352-109352 被引量:4
标识
DOI:10.1016/j.sigpro.2023.109352
摘要

The method based on non-local self-similarity patches has been widely applied in image denoising. For a given image patch, there are similar image patches at neighbor windows in the image. Traditionally, similar patches are vectorized and then rearranged into a matrix, which should have a low rank. Hence the denoising problem can be reformulated into a low rank recovery problem. However, the vectorization process can disrupt the spatial relationships among the patches. To improve this drawback, we rearrange the similar patches into a tensor to keep the spatial relationships. When the higher-order singular value decomposition (HOSVD) is applied to this tensor, the resulting core tensor should be sparse. In this paper, the sparse property of the core tensor is utilized to characterize similar patches, and then an optimization model is derived. Since the commonly used l0 norm regularization is NP-hard, we adopt the MCP function to constrain the sparse property of the core tensor. In addition, a total variation (TV) regularization term for the tensor is added to the model to preserve structural information in the image such as edges. Using the dual form to represent the total variation regularization and transforming the original problem into a saddle point problem, the primal–dual algorithm is applied to overcome the non-differentiability of the TV regularization. Finally, experimental results demonstrate that compared to existing denoising methods, the method proposed can better preserve details and structural information in the image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助esdeath采纳,获得10
1秒前
科研通AI5应助Inahurry采纳,获得10
1秒前
小赵完成签到,获得积分10
2秒前
zhui发布了新的文献求助10
2秒前
2秒前
3秒前
sakurai应助Maxw采纳,获得10
3秒前
xiangxl发布了新的文献求助10
3秒前
3秒前
4秒前
UGO发布了新的文献求助10
4秒前
lh发布了新的文献求助10
4秒前
乐乐应助个性尔槐采纳,获得10
4秒前
希望天下0贩的0应助瑶625采纳,获得10
5秒前
tengli完成签到,获得积分20
5秒前
劲秉应助坚定迎天采纳,获得20
5秒前
桐桐应助杨枝甘露樱桃采纳,获得10
6秒前
搜集达人应助zhuzhu采纳,获得20
6秒前
LiShin发布了新的文献求助10
7秒前
末岛发布了新的文献求助10
7秒前
7秒前
coffee完成签到,获得积分10
8秒前
李来仪发布了新的文献求助10
8秒前
长安完成签到,获得积分10
9秒前
Hao完成签到,获得积分10
9秒前
JamesPei应助王小志采纳,获得10
9秒前
詹密完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
酷波er应助NEMO采纳,获得10
12秒前
12秒前
12秒前
12秒前
情怀应助shirleeyeahe采纳,获得10
12秒前
13秒前
元元应助xzy采纳,获得20
13秒前
泥花完成签到,获得积分10
13秒前
247793325完成签到,获得积分20
13秒前
眼睛大的冰岚完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794