Investigating the mechanism of Sinisan formula in depression treatment: a comprehensive analysis using GEO datasets, network pharmacology, and molecular docking

药物数据库 小桶 计算生物学 对接(动物) 作用机理 化学 系统药理学 通路分析 药理学 生物 基因本体论 基因 生物化学 医学 基因表达 药品 护理部 体外
作者
Mei‐Ling Zheng,Xinxing Yang,Ping Yuan,Feiyan Wang,Xiaodi Guo,Long Li,Jin Wang,Shan Miao,Xiaopeng Shi,Shanbo Ma
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-15 被引量:2
标识
DOI:10.1080/07391102.2023.2297816
摘要

The herbal formula Sinisan (SNS) is a commonly used treatment for depression; however, its mechanism of action remains unclear. This article uses a combination of the GEO database, network pharmacology and molecular docking technologies to investigate the mechanism of action of SNS. The aim is to provide new insights and methods for future depression treatments. The study aims to extract effective compounds and targets for the treatment of depression from the T CMSP database. Relevant targets were searched using the GEO, Disgenet, Drugbank, PharmGKB and T T D databases, followed by screening of core targets. In addition, GO and KEGG pathway enrichment analyses were performed to explore potential pathways for the treatment of depression. Molecular docking was used to evaluate the potential targets and compounds and to identify the optimal core protein-compound complex. Molecular dynamics was used to further investigate the dynamic variability and stability of the complex. The study identified 118 active SNS components and 208 corresponding targets. Topological analysis of P P I networks identified 11 core targets. GO and KEGG pathway enrichment analyses revealed that the mechanism of action for depression involves genes associated with inflammation, apoptosis, oxidative stress, and the MAP K3 and P I3K-Akt signalling pathways. Molecular docking and dynamics simulations showed a strong binding affinity between these compounds and the screened targets, indicating promising biological activity. The present study investigated the active components, targets and pathways of SNS in the treatment of depression. Through a preliminary investigation, key signalling pathways and compounds were identified. These findings provide new directions and ideas for future research on the therapeutic mechanism of SNS and its clinical application in the treatment of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助岚婘采纳,获得10
刚刚
1秒前
完美世界应助Bank采纳,获得10
2秒前
2秒前
秀丽青枫完成签到 ,获得积分10
3秒前
yyc666发布了新的文献求助10
4秒前
小猫卡车完成签到,获得积分10
4秒前
chacha完成签到,获得积分10
4秒前
YY完成签到 ,获得积分10
5秒前
5秒前
ghj完成签到,获得积分10
6秒前
7秒前
8秒前
烟花应助Lua.采纳,获得20
8秒前
8秒前
lml发布了新的文献求助10
8秒前
我是老大应助科研进化中采纳,获得10
8秒前
爆米花应助轵关宣方采纳,获得20
9秒前
fffff发布了新的文献求助10
9秒前
9秒前
希望天下0贩的0应助megamind采纳,获得10
9秒前
背后的冰兰完成签到 ,获得积分20
10秒前
Cai关闭了Cai文献求助
11秒前
11秒前
12秒前
12秒前
maox1aoxin应助巴啦啦采纳,获得50
14秒前
水悟子发布了新的文献求助10
14秒前
15秒前
今后应助明眸采纳,获得10
15秒前
轩某发布了新的文献求助10
15秒前
leeran发布了新的文献求助10
16秒前
my完成签到,获得积分10
16秒前
17秒前
雪糕发布了新的文献求助10
17秒前
MgZn完成签到 ,获得积分10
18秒前
科研通AI5应助li采纳,获得10
18秒前
19秒前
ljj521314完成签到,获得积分10
20秒前
zhechen完成签到,获得积分10
20秒前
高分求助中
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
An Introduction to Second Order Partial Differential Equations 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707331
求助须知:如何正确求助?哪些是违规求助? 3256009
关于积分的说明 9898600
捐赠科研通 2968514
什么是DOI,文献DOI怎么找? 1627976
邀请新用户注册赠送积分活动 771881
科研通“疑难数据库(出版商)”最低求助积分说明 743484