Addressing the Contrast Media Recognition Challenge

医学 放射科 下腔静脉 十二指肠 置信区间 对比度(视觉) 内科学 人工智能 计算机科学
作者
Giulia Baldini,René Hosch,Cynthia S. Schmidt,Katarzyna Borys,Lennard Kroll,Sven Koitka,Patrizia Haubold,Obioma Pelka,Felix Nensa,Johannes Haubold
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:59 (9): 635-645 被引量:2
标识
DOI:10.1097/rli.0000000000001071
摘要

Objectives Accurately acquiring and assigning different contrast-enhanced phases in computed tomography (CT) is relevant for clinicians and for artificial intelligence orchestration to select the most appropriate series for analysis. However, this information is commonly extracted from the CT metadata, which is often wrong. This study aimed at developing an automatic pipeline for classifying intravenous (IV) contrast phases and additionally for identifying contrast media in the gastrointestinal tract (GIT). Materials and Methods This retrospective study used 1200 CT scans collected at the investigating institution between January 4, 2016 and September 12, 2022, and 240 CT scans from multiple centers from The Cancer Imaging Archive for external validation. The open-source segmentation algorithm TotalSegmentator was used to identify regions of interest (pulmonary artery, aorta, stomach, portal/splenic vein, liver, portal vein/hepatic veins, inferior vena cava, duodenum, small bowel, colon, left/right kidney, urinary bladder), and machine learning classifiers were trained with 5-fold cross-validation to classify IV contrast phases (noncontrast, pulmonary arterial, arterial, venous, and urographic) and GIT contrast enhancement. The performance of the ensembles was evaluated using the receiver operating characteristic area under the curve (AUC) and 95% confidence intervals (CIs). Results For the IV phase classification task, the following AUC scores were obtained for the internal test set: 99.59% [95% CI, 99.58–99.63] for the noncontrast phase, 99.50% [95% CI, 99.49–99.52] for the pulmonary-arterial phase, 99.13% [95% CI, 99.10–99.15] for the arterial phase, 99.8% [95% CI, 99.79–99.81] for the venous phase, and 99.7% [95% CI, 99.68–99.7] for the urographic phase. For the external dataset, a mean AUC of 97.33% [95% CI, 97.27–97.35] and 97.38% [95% CI, 97.34–97.41] was achieved for all contrast phases for the first and second annotators, respectively. Contrast media in the GIT could be identified with an AUC of 99.90% [95% CI, 99.89–99.9] in the internal dataset, whereas in the external dataset, an AUC of 99.73% [95% CI, 99.71–99.73] and 99.31% [95% CI, 99.27–99.33] was achieved with the first and second annotator, respectively. Conclusions The integration of open-source segmentation networks and classifiers effectively classified contrast phases and identified GIT contrast enhancement using anatomical landmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助丶夜落情泪采纳,获得10
3秒前
4秒前
6秒前
冬虫夏草完成签到,获得积分10
6秒前
ihcwo完成签到,获得积分10
7秒前
cc关闭了cc文献求助
8秒前
妮夏发布了新的文献求助10
8秒前
邢文瑞发布了新的文献求助10
9秒前
12秒前
搜集达人应助66668888采纳,获得10
12秒前
abab小王完成签到,获得积分10
13秒前
14秒前
快乐的龙猫完成签到,获得积分10
17秒前
liumou完成签到,获得积分10
17秒前
打打应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
18秒前
NexusExplorer应助科研通管家采纳,获得30
18秒前
18秒前
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
所所应助科研通管家采纳,获得10
18秒前
sunshine发布了新的文献求助10
19秒前
罗晓倩发布了新的文献求助10
19秒前
KaMoria完成签到,获得积分10
21秒前
lily336699完成签到,获得积分10
22秒前
大模型应助OUDIE采纳,获得10
22秒前
22秒前
xy关注了科研通微信公众号
23秒前
大学发布了新的文献求助10
24秒前
李健的小迷弟应助FF采纳,获得10
26秒前
sunshine完成签到,获得积分10
26秒前
26秒前
不知道完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999408
求助须知:如何正确求助?哪些是违规求助? 3538753
关于积分的说明 11275049
捐赠科研通 3277597
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810111