已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Addressing the Contrast Media Recognition Challenge

医学 放射科 下腔静脉 十二指肠 置信区间 对比度(视觉) 内科学 人工智能 计算机科学
作者
Giulia Baldini,René Hosch,Cynthia S. Schmidt,Katarzyna Borys,Lennard Kroll,Sven Koitka,Patrizia Haubold,Obioma Pelka,Felix Nensa,Johannes Haubold
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:59 (9): 635-645 被引量:2
标识
DOI:10.1097/rli.0000000000001071
摘要

Objectives Accurately acquiring and assigning different contrast-enhanced phases in computed tomography (CT) is relevant for clinicians and for artificial intelligence orchestration to select the most appropriate series for analysis. However, this information is commonly extracted from the CT metadata, which is often wrong. This study aimed at developing an automatic pipeline for classifying intravenous (IV) contrast phases and additionally for identifying contrast media in the gastrointestinal tract (GIT). Materials and Methods This retrospective study used 1200 CT scans collected at the investigating institution between January 4, 2016 and September 12, 2022, and 240 CT scans from multiple centers from The Cancer Imaging Archive for external validation. The open-source segmentation algorithm TotalSegmentator was used to identify regions of interest (pulmonary artery, aorta, stomach, portal/splenic vein, liver, portal vein/hepatic veins, inferior vena cava, duodenum, small bowel, colon, left/right kidney, urinary bladder), and machine learning classifiers were trained with 5-fold cross-validation to classify IV contrast phases (noncontrast, pulmonary arterial, arterial, venous, and urographic) and GIT contrast enhancement. The performance of the ensembles was evaluated using the receiver operating characteristic area under the curve (AUC) and 95% confidence intervals (CIs). Results For the IV phase classification task, the following AUC scores were obtained for the internal test set: 99.59% [95% CI, 99.58–99.63] for the noncontrast phase, 99.50% [95% CI, 99.49–99.52] for the pulmonary-arterial phase, 99.13% [95% CI, 99.10–99.15] for the arterial phase, 99.8% [95% CI, 99.79–99.81] for the venous phase, and 99.7% [95% CI, 99.68–99.7] for the urographic phase. For the external dataset, a mean AUC of 97.33% [95% CI, 97.27–97.35] and 97.38% [95% CI, 97.34–97.41] was achieved for all contrast phases for the first and second annotators, respectively. Contrast media in the GIT could be identified with an AUC of 99.90% [95% CI, 99.89–99.9] in the internal dataset, whereas in the external dataset, an AUC of 99.73% [95% CI, 99.71–99.73] and 99.31% [95% CI, 99.27–99.33] was achieved with the first and second annotator, respectively. Conclusions The integration of open-source segmentation networks and classifiers effectively classified contrast phases and identified GIT contrast enhancement using anatomical landmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
orange发布了新的文献求助10
1秒前
fffff完成签到,获得积分10
2秒前
JaneChen发布了新的文献求助10
2秒前
3秒前
Alex完成签到,获得积分10
4秒前
疲惫发布了新的文献求助10
5秒前
毕业比耶完成签到,获得积分10
5秒前
5秒前
ll发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
8秒前
木木发布了新的文献求助10
9秒前
优秀冰真发布了新的文献求助10
9秒前
完美世界应助温良恭俭让采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
12秒前
Jasper应助ww417采纳,获得10
12秒前
Sebastian完成签到,获得积分10
12秒前
张晓娜发布了新的文献求助10
12秒前
14秒前
饱满罡发布了新的文献求助10
14秒前
16秒前
17秒前
LONG发布了新的文献求助10
17秒前
18秒前
听闻发布了新的文献求助10
18秒前
19秒前
19秒前
科研的猫发布了新的文献求助10
20秒前
renovel发布了新的文献求助10
21秒前
1900发布了新的文献求助10
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879