Addressing the Contrast Media Recognition Challenge

医学 放射科 下腔静脉 十二指肠 置信区间 对比度(视觉) 内科学 人工智能 计算机科学
作者
Giulia Baldini,René Hosch,Cynthia S. Schmidt,Katarzyna Borys,Lennard Kroll,Sven Koitka,Patrizia Haubold,Obioma Pelka,Felix Nensa,Johannes Haubold
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/rli.0000000000001071
摘要

Objectives Accurately acquiring and assigning different contrast-enhanced phases in computed tomography (CT) is relevant for clinicians and for artificial intelligence orchestration to select the most appropriate series for analysis. However, this information is commonly extracted from the CT metadata, which is often wrong. This study aimed at developing an automatic pipeline for classifying intravenous (IV) contrast phases and additionally for identifying contrast media in the gastrointestinal tract (GIT). Materials and Methods This retrospective study used 1200 CT scans collected at the investigating institution between January 4, 2016 and September 12, 2022, and 240 CT scans from multiple centers from The Cancer Imaging Archive for external validation. The open-source segmentation algorithm TotalSegmentator was used to identify regions of interest (pulmonary artery, aorta, stomach, portal/splenic vein, liver, portal vein/hepatic veins, inferior vena cava, duodenum, small bowel, colon, left/right kidney, urinary bladder), and machine learning classifiers were trained with 5-fold cross-validation to classify IV contrast phases (noncontrast, pulmonary arterial, arterial, venous, and urographic) and GIT contrast enhancement. The performance of the ensembles was evaluated using the receiver operating characteristic area under the curve (AUC) and 95% confidence intervals (CIs). Results For the IV phase classification task, the following AUC scores were obtained for the internal test set: 99.59% [95% CI, 99.58–99.63] for the noncontrast phase, 99.50% [95% CI, 99.49–99.52] for the pulmonary-arterial phase, 99.13% [95% CI, 99.10–99.15] for the arterial phase, 99.8% [95% CI, 99.79–99.81] for the venous phase, and 99.7% [95% CI, 99.68–99.7] for the urographic phase. For the external dataset, a mean AUC of 97.33% [95% CI, 97.27–97.35] and 97.38% [95% CI, 97.34–97.41] was achieved for all contrast phases for the first and second annotators, respectively. Contrast media in the GIT could be identified with an AUC of 99.90% [95% CI, 99.89–99.9] in the internal dataset, whereas in the external dataset, an AUC of 99.73% [95% CI, 99.71–99.73] and 99.31% [95% CI, 99.27–99.33] was achieved with the first and second annotator, respectively. Conclusions The integration of open-source segmentation networks and classifiers effectively classified contrast phases and identified GIT contrast enhancement using anatomical landmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科科科研完成签到,获得积分10
1秒前
小蘑菇应助sulh采纳,获得10
1秒前
2秒前
牛犊发布了新的文献求助10
3秒前
3秒前
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得30
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
oliver501完成签到,获得积分10
7秒前
7秒前
冷酷芫发布了新的文献求助10
8秒前
岳广莹发布了新的文献求助10
8秒前
9秒前
yuyu发布了新的文献求助10
9秒前
9秒前
颜沛文发布了新的文献求助10
11秒前
11秒前
145完成签到,获得积分10
11秒前
两米七发布了新的文献求助20
12秒前
凶凶发布了新的文献求助10
12秒前
轻松刚完成签到,获得积分10
13秒前
sulh发布了新的文献求助10
13秒前
平淡寒天发布了新的文献求助10
13秒前
13秒前
钰凛发布了新的文献求助10
15秒前
善意小霸王应助sunny202021采纳,获得10
15秒前
栾小鱼发布了新的文献求助10
15秒前
18秒前
颜沛文完成签到,获得积分10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376