亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contrastive adaptive frequency decomposition network guided by haze discrimination for real-world image dehazing

薄雾 计算机科学 分解 人工智能 图像(数学) 计算机视觉 物理 生物 生态学 气象学
作者
Yaozong Mo,Chaofeng Li
出处
期刊:Displays [Elsevier]
卷期号:82: 102665-102665 被引量:1
标识
DOI:10.1016/j.displa.2024.102665
摘要

Recent unsupervised image dehazing methods used unpaired real-world training data for enhancing generalization on real-world scenes. However, these methods often require dehazing and rehazing cycles with auxiliary networks for training, resulting in high computational costs and extended training time. In this work, we propose an unsupervised dehazing framework called Contrastive Adaptive Frequency Decomposition Dehazing Network (CAFDD). By incorporating carefully designed network structure and constraints, our CAFDD well avoids additional training overhead and needs only 1.91M parameters. Specifically, we first consider the following insights, including: 1) Haze primarily affects high-frequency components in an image, resulting in blurred edges; 2) Low-frequency components capture the large-scale variations with less susceptibility to haze; and 3) Existing unlearnable frequency decomposition methods such Fourier transform often suffer from information loss, and thus develop the novel PMP (Pointwise convolution-Max pooling-Pointwise convolution) and DAD (Depthwise convolution-Average pooling-Depthwise convolution) blocks to automatically extract high and low-frequency features from input images for accurately estimating transmission map. Then, we propose haze discrimination (HD), a new pretext task for contrastive learning in image dehazing, by forming positive and negative pairs based on haze presence, in order for guiding the network to extract visibility-related features. Last, to get rid of the rehazing cycle and improve training efficiency, we construct a pixel-level constraint, histogram equalization-based texture loss function, which enhances the sharpness and realism of the generated images. Through extensive experiments, we demonstrate the superiority of our CAFDD over the state-of-the-art dehazing approaches on real-world land and overwater images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
国色不染尘完成签到,获得积分10
9秒前
20秒前
结实的半双完成签到,获得积分10
23秒前
26秒前
芙瑞完成签到 ,获得积分10
37秒前
39秒前
1分钟前
Azlne完成签到,获得积分10
1分钟前
2分钟前
zhjl发布了新的文献求助10
2分钟前
2分钟前
滕皓轩完成签到 ,获得积分20
2分钟前
3分钟前
清脆语海发布了新的文献求助10
3分钟前
李爱国应助清脆语海采纳,获得10
3分钟前
3分钟前
3分钟前
MiaMia应助科研通管家采纳,获得30
3分钟前
科研通AI6应助科研通管家采纳,获得30
3分钟前
4分钟前
香蕉觅云应助zl采纳,获得10
4分钟前
zym完成签到 ,获得积分10
4分钟前
4分钟前
ZYP发布了新的文献求助10
5分钟前
深情安青应助朱羊羊采纳,获得10
5分钟前
5分钟前
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
6分钟前
zl发布了新的文献求助10
6分钟前
hhx完成签到,获得积分20
6分钟前
zl完成签到,获得积分10
6分钟前
Wei发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4750040
关于积分的说明 15007251
捐赠科研通 4797884
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522880
关于科研通互助平台的介绍 1482534