Contrastive adaptive frequency decomposition network guided by haze discrimination for real-world image dehazing

薄雾 计算机科学 分解 人工智能 图像(数学) 计算机视觉 物理 生物 生态学 气象学
作者
Yaozong Mo,Chaofeng Li
出处
期刊:Displays [Elsevier BV]
卷期号:82: 102665-102665 被引量:1
标识
DOI:10.1016/j.displa.2024.102665
摘要

Recent unsupervised image dehazing methods used unpaired real-world training data for enhancing generalization on real-world scenes. However, these methods often require dehazing and rehazing cycles with auxiliary networks for training, resulting in high computational costs and extended training time. In this work, we propose an unsupervised dehazing framework called Contrastive Adaptive Frequency Decomposition Dehazing Network (CAFDD). By incorporating carefully designed network structure and constraints, our CAFDD well avoids additional training overhead and needs only 1.91M parameters. Specifically, we first consider the following insights, including: 1) Haze primarily affects high-frequency components in an image, resulting in blurred edges; 2) Low-frequency components capture the large-scale variations with less susceptibility to haze; and 3) Existing unlearnable frequency decomposition methods such Fourier transform often suffer from information loss, and thus develop the novel PMP (Pointwise convolution-Max pooling-Pointwise convolution) and DAD (Depthwise convolution-Average pooling-Depthwise convolution) blocks to automatically extract high and low-frequency features from input images for accurately estimating transmission map. Then, we propose haze discrimination (HD), a new pretext task for contrastive learning in image dehazing, by forming positive and negative pairs based on haze presence, in order for guiding the network to extract visibility-related features. Last, to get rid of the rehazing cycle and improve training efficiency, we construct a pixel-level constraint, histogram equalization-based texture loss function, which enhances the sharpness and realism of the generated images. Through extensive experiments, we demonstrate the superiority of our CAFDD over the state-of-the-art dehazing approaches on real-world land and overwater images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hbw发布了新的文献求助10
1秒前
1秒前
1秒前
温莉发布了新的文献求助30
2秒前
杜康发布了新的文献求助10
2秒前
2秒前
3秒前
十二应助cooler采纳,获得10
3秒前
JMrider发布了新的文献求助10
4秒前
辛勤南琴完成签到,获得积分10
5秒前
ghytrfd完成签到,获得积分10
5秒前
ding应助看文献的韩章浅采纳,获得10
5秒前
阿方完成签到,获得积分10
6秒前
下雨天完成签到,获得积分10
7秒前
思源应助XL神放采纳,获得10
7秒前
可爱邓邓发布了新的文献求助10
7秒前
细腻灯泡发布了新的文献求助10
8秒前
hhhi应助周雪娇采纳,获得10
10秒前
科研通AI5应助bnm采纳,获得10
11秒前
酷波er应助阿克66采纳,获得10
11秒前
12秒前
17秒前
001完成签到 ,获得积分10
18秒前
20秒前
bxg完成签到 ,获得积分10
20秒前
21秒前
yuaasusanaann发布了新的文献求助10
22秒前
失眠朋友完成签到,获得积分10
23秒前
困困赵发布了新的文献求助10
24秒前
彭于晏应助微笑的语芙采纳,获得10
24秒前
伏波完成签到,获得积分0
24秒前
Akim应助小狗采纳,获得30
24秒前
25秒前
28秒前
28秒前
sherryyijia完成签到 ,获得积分10
29秒前
tttp完成签到,获得积分10
29秒前
碧蓝莫言应助tclouds采纳,获得30
30秒前
30秒前
思源应助ming采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999817
求助须知:如何正确求助?哪些是违规求助? 3539272
关于积分的说明 11276402
捐赠科研通 3277909
什么是DOI,文献DOI怎么找? 1807781
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142