GCNGAT: Drug–disease association prediction based on graph convolution neural network and graph attention network

计算机科学 联营 图形 人工神经网络 药品 人工智能 疾病 接收机工作特性 特征学习 机器学习 数据挖掘 理论计算机科学 医学 病理 精神科
作者
Runtao Yang,Yao Fu,Qian Zhang,Lina Zhang
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:150: 102805-102805 被引量:11
标识
DOI:10.1016/j.artmed.2024.102805
摘要

Predicting drug–disease associations can contribute to discovering new therapeutic potentials of drugs, and providing important association information for new drug research and development. Many existing drug–disease association prediction methods have not distinguished relevant background information for the same drug targeted to different diseases. Therefore, this paper proposes a drug–disease association prediction model based on graph convolutional network and graph attention network (GCNGAT) to reposition marketed drugs under the distinguishment of background information. Firstly, in order to obtain initial drug–disease information, a drug–disease heterogeneous graph structure is constructed based on all known drug–disease associations. Secondly, based on the heterogeneous graph structure, the corresponding subgraphs of each group of drug–disease association pairs are extracted to distinguish different background information for the same drug from different diseases. Finally, a model combining Graph neural network with global Average pooling (GnnAp) is designed to predict potential drug–disease associations by learning drug–disease interaction feature representations. The experimental results show that adding subgraph extraction can effectively improve the prediction performance of the model, and the graph representation learning module can fully extract the deep features of drug–disease. Using the 5-fold cross-validation, the proposed model (GCNGAT) achieves AUC (Area Under the receiver operating characteristic Curve) values of 0.9182 and 0.9417 on the PREDICT dataset and CDataset dataset, respectively. Compared with other predictors on the same dataset (PREDICT dataset), GCNGAT outperforms the existing best-performing model (PSGCN), with a 1.58% increase in the AUC value. It is anticipated that this model can provide experimental reference for drug repositioning and further promote the drug research and development process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助sun采纳,获得10
刚刚
懵懂的随阴完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
fendy发布了新的文献求助50
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
顺利毕业发布了新的文献求助10
3秒前
欢呼以柳完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
董小妍完成签到 ,获得积分10
6秒前
7秒前
hkh发布了新的文献求助10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
LmyHusband完成签到,获得积分10
11秒前
FashionBoy应助你妹你妹你妹采纳,获得10
12秒前
13秒前
13秒前
慕明花开发布了新的文献求助10
13秒前
霍明轩完成签到 ,获得积分10
16秒前
lipeng完成签到,获得积分10
18秒前
19秒前
仲滋滋完成签到,获得积分10
19秒前
Jim完成签到,获得积分20
19秒前
何斐完成签到 ,获得积分10
19秒前
慕明花开完成签到,获得积分10
20秒前
GHJK完成签到,获得积分10
20秒前
21秒前
22秒前
你妹你妹你妹完成签到,获得积分10
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
槐椟完成签到,获得积分10
25秒前
jerry_x发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774852
求助须知:如何正确求助?哪些是违规求助? 5620046
关于积分的说明 15436926
捐赠科研通 4907323
什么是DOI,文献DOI怎么找? 2640592
邀请新用户注册赠送积分活动 1588479
关于科研通互助平台的介绍 1543394