GCNGAT: Drug–disease association prediction based on graph convolution neural network and graph attention network

计算机科学 联营 图形 人工神经网络 药品 人工智能 疾病 接收机工作特性 特征学习 机器学习 数据挖掘 理论计算机科学 医学 病理 精神科
作者
Runtao Yang,Yao Fu,Qian Zhang,Lina Zhang
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:150: 102805-102805 被引量:11
标识
DOI:10.1016/j.artmed.2024.102805
摘要

Predicting drug–disease associations can contribute to discovering new therapeutic potentials of drugs, and providing important association information for new drug research and development. Many existing drug–disease association prediction methods have not distinguished relevant background information for the same drug targeted to different diseases. Therefore, this paper proposes a drug–disease association prediction model based on graph convolutional network and graph attention network (GCNGAT) to reposition marketed drugs under the distinguishment of background information. Firstly, in order to obtain initial drug–disease information, a drug–disease heterogeneous graph structure is constructed based on all known drug–disease associations. Secondly, based on the heterogeneous graph structure, the corresponding subgraphs of each group of drug–disease association pairs are extracted to distinguish different background information for the same drug from different diseases. Finally, a model combining Graph neural network with global Average pooling (GnnAp) is designed to predict potential drug–disease associations by learning drug–disease interaction feature representations. The experimental results show that adding subgraph extraction can effectively improve the prediction performance of the model, and the graph representation learning module can fully extract the deep features of drug–disease. Using the 5-fold cross-validation, the proposed model (GCNGAT) achieves AUC (Area Under the receiver operating characteristic Curve) values of 0.9182 and 0.9417 on the PREDICT dataset and CDataset dataset, respectively. Compared with other predictors on the same dataset (PREDICT dataset), GCNGAT outperforms the existing best-performing model (PSGCN), with a 1.58% increase in the AUC value. It is anticipated that this model can provide experimental reference for drug repositioning and further promote the drug research and development process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咚咚完成签到,获得积分20
刚刚
打打应助森林木采纳,获得10
1秒前
小电驴完成签到,获得积分10
5秒前
时代炸蛋完成签到 ,获得积分10
5秒前
bo完成签到 ,获得积分10
6秒前
chenkj完成签到,获得积分10
7秒前
EricSai完成签到,获得积分0
8秒前
ikun完成签到,获得积分10
8秒前
研友_ZA2B68完成签到,获得积分0
8秒前
十一完成签到 ,获得积分10
9秒前
缥缈的闭月完成签到,获得积分10
10秒前
xhd183完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
ZHQ完成签到,获得积分10
15秒前
文心同学完成签到,获得积分0
16秒前
秋的账号完成签到 ,获得积分10
16秒前
Lrcx完成签到 ,获得积分10
16秒前
溪字完成签到,获得积分20
17秒前
月军完成签到,获得积分10
19秒前
研友_nvebxL完成签到,获得积分10
20秒前
风信子完成签到,获得积分10
20秒前
BK_201完成签到,获得积分10
23秒前
南城雨落完成签到 ,获得积分10
23秒前
Helios完成签到,获得积分10
23秒前
fuluyuzhe_668完成签到,获得积分10
23秒前
abiorz完成签到,获得积分0
24秒前
窗外是蔚蓝色完成签到,获得积分10
25秒前
丘奇完成签到,获得积分10
25秒前
25秒前
25秒前
nanostu完成签到,获得积分0
25秒前
华仔应助科研通管家采纳,获得10
25秒前
26秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
布吉布应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
顺利的蘑菇完成签到 ,获得积分10
26秒前
jhxie完成签到,获得积分10
26秒前
nssanc完成签到,获得积分10
27秒前
Amikacin完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677061
求助须知:如何正确求助?哪些是违规求助? 4969723
关于积分的说明 15159261
捐赠科研通 4836738
什么是DOI,文献DOI怎么找? 2591264
邀请新用户注册赠送积分活动 1544746
关于科研通互助平台的介绍 1502751