GCNGAT: Drug–disease association prediction based on graph convolution neural network and graph attention network

计算机科学 联营 图形 人工神经网络 药品 人工智能 疾病 接收机工作特性 特征学习 机器学习 数据挖掘 理论计算机科学 医学 精神科 病理
作者
Runtao Yang,Yao Fu,Qian Zhang,Lina Zhang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:150: 102805-102805 被引量:4
标识
DOI:10.1016/j.artmed.2024.102805
摘要

Predicting drug–disease associations can contribute to discovering new therapeutic potentials of drugs, and providing important association information for new drug research and development. Many existing drug–disease association prediction methods have not distinguished relevant background information for the same drug targeted to different diseases. Therefore, this paper proposes a drug–disease association prediction model based on graph convolutional network and graph attention network (GCNGAT) to reposition marketed drugs under the distinguishment of background information. Firstly, in order to obtain initial drug–disease information, a drug–disease heterogeneous graph structure is constructed based on all known drug–disease associations. Secondly, based on the heterogeneous graph structure, the corresponding subgraphs of each group of drug–disease association pairs are extracted to distinguish different background information for the same drug from different diseases. Finally, a model combining Graph neural network with global Average pooling (GnnAp) is designed to predict potential drug–disease associations by learning drug–disease interaction feature representations. The experimental results show that adding subgraph extraction can effectively improve the prediction performance of the model, and the graph representation learning module can fully extract the deep features of drug–disease. Using the 5-fold cross-validation, the proposed model (GCNGAT) achieves AUC (Area Under the receiver operating characteristic Curve) values of 0.9182 and 0.9417 on the PREDICT dataset and CDataset dataset, respectively. Compared with other predictors on the same dataset (PREDICT dataset), GCNGAT outperforms the existing best-performing model (PSGCN), with a 1.58% increase in the AUC value. It is anticipated that this model can provide experimental reference for drug repositioning and further promote the drug research and development process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乐发布了新的文献求助10
1秒前
Q清风慕竹发布了新的文献求助10
2秒前
2秒前
nojivv完成签到,获得积分10
2秒前
Litm完成签到 ,获得积分10
3秒前
4秒前
kita完成签到,获得积分10
4秒前
qzj完成签到,获得积分10
4秒前
5秒前
LIKUN完成签到,获得积分10
5秒前
用心若镜2完成签到,获得积分10
6秒前
marry完成签到,获得积分10
7秒前
褪色发布了新的文献求助10
8秒前
枫落无霜发布了新的文献求助10
9秒前
9秒前
marry发布了新的文献求助10
10秒前
用心若镜2发布了新的文献求助10
10秒前
Jackie发布了新的文献求助10
14秒前
susu完成签到,获得积分10
17秒前
上官若男应助枫落无霜采纳,获得10
18秒前
22秒前
23秒前
7123完成签到,获得积分20
24秒前
酷波er应助尘南浔采纳,获得10
25秒前
27秒前
GSQ发布了新的文献求助10
27秒前
丘比特应助caicai采纳,获得10
27秒前
lin发布了新的文献求助10
28秒前
书包王完成签到,获得积分10
28秒前
29秒前
921发布了新的文献求助10
29秒前
29秒前
30秒前
30秒前
深情世立发布了新的文献求助10
30秒前
忐忑的天真完成签到 ,获得积分10
32秒前
Amiee发布了新的文献求助10
33秒前
Akim应助GSQ采纳,获得10
34秒前
34秒前
MeSs完成签到 ,获得积分10
34秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707920
求助须知:如何正确求助?哪些是违规求助? 3256447
关于积分的说明 9900200
捐赠科研通 2969011
什么是DOI,文献DOI怎么找? 1628271
邀请新用户注册赠送积分活动 772038
科研通“疑难数据库(出版商)”最低求助积分说明 743611