GCNGAT: Drug–disease association prediction based on graph convolution neural network and graph attention network

计算机科学 联营 图形 人工神经网络 药品 人工智能 疾病 接收机工作特性 特征学习 机器学习 数据挖掘 理论计算机科学 医学 病理 精神科
作者
Runtao Yang,Yao Fu,Qian Zhang,Lina Zhang
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:150: 102805-102805 被引量:1
标识
DOI:10.1016/j.artmed.2024.102805
摘要

Predicting drug–disease associations can contribute to discovering new therapeutic potentials of drugs, and providing important association information for new drug research and development. Many existing drug–disease association prediction methods have not distinguished relevant background information for the same drug targeted to different diseases. Therefore, this paper proposes a drug–disease association prediction model based on graph convolutional network and graph attention network (GCNGAT) to reposition marketed drugs under the distinguishment of background information. Firstly, in order to obtain initial drug–disease information, a drug–disease heterogeneous graph structure is constructed based on all known drug–disease associations. Secondly, based on the heterogeneous graph structure, the corresponding subgraphs of each group of drug–disease association pairs are extracted to distinguish different background information for the same drug from different diseases. Finally, a model combining Graph neural network with global Average pooling (GnnAp) is designed to predict potential drug–disease associations by learning drug–disease interaction feature representations. The experimental results show that adding subgraph extraction can effectively improve the prediction performance of the model, and the graph representation learning module can fully extract the deep features of drug–disease. Using the 5-fold cross-validation, the proposed model (GCNGAT) achieves AUC (Area Under the receiver operating characteristic Curve) values of 0.9182 and 0.9417 on the PREDICT dataset and CDataset dataset, respectively. Compared with other predictors on the same dataset (PREDICT dataset), GCNGAT outperforms the existing best-performing model (PSGCN), with a 1.58% increase in the AUC value. It is anticipated that this model can provide experimental reference for drug repositioning and further promote the drug research and development process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CoCo完成签到 ,获得积分10
刚刚
清爽白开水完成签到,获得积分10
刚刚
wanci应助整齐泥猴桃采纳,获得10
1秒前
hyw发布了新的文献求助10
1秒前
CanPeng发布了新的文献求助30
1秒前
2秒前
3秒前
3秒前
3秒前
脑洞疼应助聂学雨采纳,获得10
3秒前
3秒前
哦豁应助hg采纳,获得10
4秒前
小燚发布了新的文献求助10
4秒前
yyq发布了新的文献求助30
5秒前
gggja完成签到,获得积分10
5秒前
5秒前
5秒前
吴宵完成签到,获得积分10
6秒前
6秒前
6秒前
JoanNig完成签到,获得积分10
6秒前
长孙兰溪发布了新的文献求助10
6秒前
7秒前
桐桐应助默默的航空采纳,获得10
7秒前
田様应助seusyy采纳,获得20
7秒前
情怀应助hellojwx采纳,获得10
7秒前
liu完成签到,获得积分20
7秒前
8秒前
小土豆完成签到,获得积分10
8秒前
YYYY发布了新的文献求助10
9秒前
良月一十关注了科研通微信公众号
9秒前
9秒前
知非发布了新的文献求助10
9秒前
瀛瀛完成签到 ,获得积分10
10秒前
昆仑山吴某完成签到 ,获得积分10
10秒前
ConnieWang完成签到,获得积分10
10秒前
一只老呆猪应助林冲采纳,获得10
10秒前
10秒前
海风发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134416
求助须知:如何正确求助?哪些是违规求助? 2785328
关于积分的说明 7771336
捐赠科研通 2440922
什么是DOI,文献DOI怎么找? 1297593
科研通“疑难数据库(出版商)”最低求助积分说明 625007
版权声明 600792