GCNGAT: Drug–disease association prediction based on graph convolution neural network and graph attention network

计算机科学 联营 图形 人工神经网络 药品 人工智能 疾病 接收机工作特性 特征学习 机器学习 数据挖掘 理论计算机科学 医学 病理 精神科
作者
Runtao Yang,Yao Fu,Qian Zhang,Lina Zhang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:150: 102805-102805 被引量:8
标识
DOI:10.1016/j.artmed.2024.102805
摘要

Predicting drug–disease associations can contribute to discovering new therapeutic potentials of drugs, and providing important association information for new drug research and development. Many existing drug–disease association prediction methods have not distinguished relevant background information for the same drug targeted to different diseases. Therefore, this paper proposes a drug–disease association prediction model based on graph convolutional network and graph attention network (GCNGAT) to reposition marketed drugs under the distinguishment of background information. Firstly, in order to obtain initial drug–disease information, a drug–disease heterogeneous graph structure is constructed based on all known drug–disease associations. Secondly, based on the heterogeneous graph structure, the corresponding subgraphs of each group of drug–disease association pairs are extracted to distinguish different background information for the same drug from different diseases. Finally, a model combining Graph neural network with global Average pooling (GnnAp) is designed to predict potential drug–disease associations by learning drug–disease interaction feature representations. The experimental results show that adding subgraph extraction can effectively improve the prediction performance of the model, and the graph representation learning module can fully extract the deep features of drug–disease. Using the 5-fold cross-validation, the proposed model (GCNGAT) achieves AUC (Area Under the receiver operating characteristic Curve) values of 0.9182 and 0.9417 on the PREDICT dataset and CDataset dataset, respectively. Compared with other predictors on the same dataset (PREDICT dataset), GCNGAT outperforms the existing best-performing model (PSGCN), with a 1.58% increase in the AUC value. It is anticipated that this model can provide experimental reference for drug repositioning and further promote the drug research and development process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫信封发布了新的文献求助10
刚刚
张亚朋完成签到,获得积分10
1秒前
老妖怪完成签到,获得积分10
1秒前
李爱国应助包容的瑾瑜采纳,获得10
1秒前
2秒前
3秒前
小齐完成签到 ,获得积分10
4秒前
4秒前
科目三应助专注的冰巧采纳,获得10
5秒前
5秒前
hanping完成签到,获得积分10
5秒前
小王时完成签到,获得积分10
5秒前
zz完成签到,获得积分10
5秒前
莫非完成签到,获得积分10
5秒前
芝麻发布了新的文献求助10
6秒前
BP完成签到,获得积分10
7秒前
Hannah完成签到,获得积分10
7秒前
ICY完成签到,获得积分10
7秒前
7秒前
8秒前
Ava应助犹豫的觅云采纳,获得10
9秒前
9秒前
9秒前
qwe完成签到,获得积分10
9秒前
乐乐应助张文静采纳,获得10
10秒前
10秒前
听雨潇潇完成签到,获得积分10
10秒前
10秒前
10秒前
lagom完成签到,获得积分10
11秒前
曾经青亦完成签到,获得积分10
11秒前
大反应釜完成签到,获得积分10
12秒前
12秒前
holland完成签到 ,获得积分10
12秒前
夏日天空完成签到,获得积分10
12秒前
qwe关闭了qwe文献求助
13秒前
PJ完成签到,获得积分10
13秒前
14秒前
浔xxx发布了新的文献求助10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650