GCNGAT: Drug–disease association prediction based on graph convolution neural network and graph attention network

计算机科学 联营 图形 人工神经网络 药品 人工智能 疾病 接收机工作特性 特征学习 机器学习 数据挖掘 理论计算机科学 医学 病理 精神科
作者
Runtao Yang,Yao Fu,Qian Zhang,Lina Zhang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:150: 102805-102805 被引量:11
标识
DOI:10.1016/j.artmed.2024.102805
摘要

Predicting drug–disease associations can contribute to discovering new therapeutic potentials of drugs, and providing important association information for new drug research and development. Many existing drug–disease association prediction methods have not distinguished relevant background information for the same drug targeted to different diseases. Therefore, this paper proposes a drug–disease association prediction model based on graph convolutional network and graph attention network (GCNGAT) to reposition marketed drugs under the distinguishment of background information. Firstly, in order to obtain initial drug–disease information, a drug–disease heterogeneous graph structure is constructed based on all known drug–disease associations. Secondly, based on the heterogeneous graph structure, the corresponding subgraphs of each group of drug–disease association pairs are extracted to distinguish different background information for the same drug from different diseases. Finally, a model combining Graph neural network with global Average pooling (GnnAp) is designed to predict potential drug–disease associations by learning drug–disease interaction feature representations. The experimental results show that adding subgraph extraction can effectively improve the prediction performance of the model, and the graph representation learning module can fully extract the deep features of drug–disease. Using the 5-fold cross-validation, the proposed model (GCNGAT) achieves AUC (Area Under the receiver operating characteristic Curve) values of 0.9182 and 0.9417 on the PREDICT dataset and CDataset dataset, respectively. Compared with other predictors on the same dataset (PREDICT dataset), GCNGAT outperforms the existing best-performing model (PSGCN), with a 1.58% increase in the AUC value. It is anticipated that this model can provide experimental reference for drug repositioning and further promote the drug research and development process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果子完成签到,获得积分10
1秒前
cr7完成签到,获得积分10
2秒前
风清扬发布了新的文献求助10
2秒前
lsz发布了新的文献求助10
2秒前
Jackylee发布了新的文献求助10
2秒前
阳光襄发布了新的文献求助10
3秒前
dada发布了新的文献求助20
4秒前
隐形曼青应助zjh采纳,获得10
4秒前
5秒前
斯文败类应助El采纳,获得10
7秒前
英姑应助lixiaotian采纳,获得10
7秒前
7秒前
8秒前
动听一手发布了新的文献求助30
9秒前
SciGPT应助科研通管家采纳,获得100
9秒前
李健应助科研通管家采纳,获得10
9秒前
每天100次应助科研通管家采纳,获得20
9秒前
9秒前
天天快乐应助科研通管家采纳,获得50
10秒前
小青椒应助科研通管家采纳,获得20
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
今后应助uiui采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
难过亦丝完成签到,获得积分10
11秒前
12秒前
nana发布了新的文献求助10
12秒前
难过亦丝发布了新的文献求助10
13秒前
科研通AI6应助自信的盼海采纳,获得10
14秒前
科研通AI5应助RepertoireFupeng采纳,获得30
15秒前
15秒前
量子星尘发布了新的文献求助50
16秒前
16秒前
科研通AI2S应助陈煜采纳,获得10
16秒前
16秒前
星星点灯完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003579
求助须知:如何正确求助?哪些是违规求助? 4248189
关于积分的说明 13235662
捐赠科研通 4047228
什么是DOI,文献DOI怎么找? 2214242
邀请新用户注册赠送积分活动 1224324
关于科研通互助平台的介绍 1144641