计算机科学
砂矿开采
可扩展性
加速
并行计算
编码(集合论)
超大规模集成
计算机工程
源代码
计算科学
质量(理念)
操作员(生物学)
插件
算法
计算机体系结构
嵌入式系统
程序设计语言
认识论
基因
哲学
抑制因子
转录因子
集合(抽象数据类型)
化学
冶金
材料科学
生物化学
作者
Lixin Liu,Bangqi Fu,Shiju Lin,Jinwei Liu,Evangeline F. Y. Young,Martin D. F. Wong
标识
DOI:10.1109/tcad.2023.3346291
摘要
Placement serves as a fundamental step in VLSI physical design. Recently, GPU-based placer DREAMPlace 1 demonstrated its superiority over CPU-based placers. In this work, we develop an extremely fast GPU-accelerated placer Xplace which considers factors at operator-level optimization. Xplace achieves around 2x speedup with better solution quality compared to DREAMPlace. We also plug a novel Fourier neural network into Xplace as an extension. Besides, we enable Xplace to handle the detailed-routability-driven placement problem and demonstrate its superiority in terms of quality and performance. We believe this work not only proposes an extremely fast and extensible placement framework but also illustrates a possibility of incorporating a neural network component into a GPU-accelerated analytical placer. The source code of Xplace is released on GitHub.
科研通智能强力驱动
Strongly Powered by AbleSci AI