Recent Progress of Protein Tertiary Structure Prediction

卡斯普 蛋白质结构预测 计算机科学 人工智能 蛋白质结构 蛋白质三级结构 领域(数学) 机器学习 蛋白质折叠 生物 生物化学 数学 纯数学
作者
Qiqige Wuyun,Yihan Chen,Yifeng Shen,Yang Cao,Gang Hu,Wei Cui,Jianzhao Gao,Wei Zheng
出处
期刊:Molecules [MDPI AG]
卷期号:29 (4): 832-832 被引量:7
标识
DOI:10.3390/molecules29040832
摘要

The prediction of three-dimensional (3D) protein structure from amino acid sequences has stood as a significant challenge in computational and structural bioinformatics for decades. Recently, the widespread integration of artificial intelligence (AI) algorithms has substantially expedited advancements in protein structure prediction, yielding numerous significant milestones. In particular, the end-to-end deep learning method AlphaFold2 has facilitated the rise of structure prediction performance to new heights, regularly competitive with experimental structures in the 14th Critical Assessment of Protein Structure Prediction (CASP14). To provide a comprehensive understanding and guide future research in the field of protein structure prediction for researchers, this review describes various methodologies, assessments, and databases in protein structure prediction, including traditionally used protein structure prediction methods, such as template-based modeling (TBM) and template-free modeling (FM) approaches; recently developed deep learning-based methods, such as contact/distance-guided methods, end-to-end folding methods, and protein language model (PLM)-based methods; multi-domain protein structure prediction methods; the CASP experiments and related assessments; and the recently released AlphaFold Protein Structure Database (AlphaFold DB). We discuss their advantages, disadvantages, and application scopes, aiming to provide researchers with insights through which to understand the limitations, contexts, and effective selections of protein structure prediction methods in protein-related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫枫829发布了新的文献求助10
刚刚
zds发布了新的文献求助10
刚刚
unflycn发布了新的文献求助10
1秒前
szmsnail完成签到,获得积分10
1秒前
直率的凌香完成签到,获得积分10
2秒前
大个应助柚子采纳,获得10
3秒前
翟如风发布了新的文献求助10
3秒前
枫于林完成签到 ,获得积分10
4秒前
Lycerdoctor完成签到 ,获得积分10
5秒前
小二郎应助joo采纳,获得10
6秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得30
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
8秒前
上官若男应助温婉的乌采纳,获得30
9秒前
9秒前
zds完成签到,获得积分20
10秒前
dmmmm完成签到,获得积分20
11秒前
边港洋发布了新的文献求助10
12秒前
12秒前
翟如风完成签到,获得积分10
14秒前
17秒前
17秒前
18秒前
19秒前
刘颖玉完成签到,获得积分10
20秒前
刘颖玉发布了新的文献求助10
22秒前
小赵发布了新的文献求助10
22秒前
852应助顺心真采纳,获得30
26秒前
清爽博超完成签到,获得积分10
26秒前
有魅力的大船完成签到,获得积分10
27秒前
清新的万天完成签到,获得积分10
28秒前
Owen应助alfredwu94采纳,获得10
29秒前
29秒前
30秒前
zhaoyuepu完成签到,获得积分10
31秒前
joo发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159847
求助须知:如何正确求助?哪些是违规求助? 2810808
关于积分的说明 7889521
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315173
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012