Recent Progress of Protein Tertiary Structure Prediction

卡斯普 蛋白质结构预测 计算机科学 人工智能 蛋白质结构 蛋白质三级结构 领域(数学) 机器学习 蛋白质折叠 生物 生物化学 数学 纯数学
作者
Qiqige Wuyun,Yihan Chen,Yifeng Shen,Yang Cao,Gang Hu,Wei Cui,Jianzhao Gao,Wei Zheng
出处
期刊:Molecules [MDPI AG]
卷期号:29 (4): 832-832 被引量:7
标识
DOI:10.3390/molecules29040832
摘要

The prediction of three-dimensional (3D) protein structure from amino acid sequences has stood as a significant challenge in computational and structural bioinformatics for decades. Recently, the widespread integration of artificial intelligence (AI) algorithms has substantially expedited advancements in protein structure prediction, yielding numerous significant milestones. In particular, the end-to-end deep learning method AlphaFold2 has facilitated the rise of structure prediction performance to new heights, regularly competitive with experimental structures in the 14th Critical Assessment of Protein Structure Prediction (CASP14). To provide a comprehensive understanding and guide future research in the field of protein structure prediction for researchers, this review describes various methodologies, assessments, and databases in protein structure prediction, including traditionally used protein structure prediction methods, such as template-based modeling (TBM) and template-free modeling (FM) approaches; recently developed deep learning-based methods, such as contact/distance-guided methods, end-to-end folding methods, and protein language model (PLM)-based methods; multi-domain protein structure prediction methods; the CASP experiments and related assessments; and the recently released AlphaFold Protein Structure Database (AlphaFold DB). We discuss their advantages, disadvantages, and application scopes, aiming to provide researchers with insights through which to understand the limitations, contexts, and effective selections of protein structure prediction methods in protein-related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgcyp完成签到,获得积分10
3秒前
ysh完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
6秒前
wang完成签到,获得积分10
7秒前
Jzhang应助Yimim采纳,获得10
8秒前
沐风发布了新的文献求助20
9秒前
汉关发布了新的文献求助10
11秒前
11秒前
葶儿完成签到,获得积分10
11秒前
安详中蓝完成签到 ,获得积分10
12秒前
呆萌士晋发布了新的文献求助10
12秒前
12秒前
14秒前
呆头发布了新的文献求助10
16秒前
若水发布了新的文献求助200
17秒前
17秒前
18秒前
子川发布了新的文献求助10
18秒前
大头娃娃没下巴完成签到,获得积分10
20秒前
liyuchen完成签到,获得积分10
20秒前
CipherSage应助Lxxx_7采纳,获得10
21秒前
烟花应助永远少年采纳,获得10
21秒前
meng发布了新的文献求助10
23秒前
科研通AI5应助贪吃的猴子采纳,获得10
25秒前
25秒前
可爱的彩虹完成签到,获得积分10
25秒前
小确幸完成签到,获得积分10
25秒前
彭于晏应助毛毛虫采纳,获得10
26秒前
LilyChen完成签到 ,获得积分10
26秒前
Owen应助Su采纳,获得10
26秒前
26秒前
26秒前
27秒前
28秒前
yyyy关注了科研通微信公众号
28秒前
Jane完成签到 ,获得积分10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824