已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recent Progress of Protein Tertiary Structure Prediction

卡斯普 蛋白质结构预测 计算机科学 人工智能 蛋白质结构 蛋白质三级结构 领域(数学) 机器学习 结构生物信息学 蛋白质折叠 生物 数学 生物化学 纯数学
作者
Qiqige Wuyun,Yihan Chen,Yifeng Shen,Yang Cao,Gang Hu,Wei Cui,Jianzhao Gao,Wei Zheng
出处
期刊:Molecules [MDPI AG]
卷期号:29 (4): 832-832 被引量:20
标识
DOI:10.3390/molecules29040832
摘要

The prediction of three-dimensional (3D) protein structure from amino acid sequences has stood as a significant challenge in computational and structural bioinformatics for decades. Recently, the widespread integration of artificial intelligence (AI) algorithms has substantially expedited advancements in protein structure prediction, yielding numerous significant milestones. In particular, the end-to-end deep learning method AlphaFold2 has facilitated the rise of structure prediction performance to new heights, regularly competitive with experimental structures in the 14th Critical Assessment of Protein Structure Prediction (CASP14). To provide a comprehensive understanding and guide future research in the field of protein structure prediction for researchers, this review describes various methodologies, assessments, and databases in protein structure prediction, including traditionally used protein structure prediction methods, such as template-based modeling (TBM) and template-free modeling (FM) approaches; recently developed deep learning-based methods, such as contact/distance-guided methods, end-to-end folding methods, and protein language model (PLM)-based methods; multi-domain protein structure prediction methods; the CASP experiments and related assessments; and the recently released AlphaFold Protein Structure Database (AlphaFold DB). We discuss their advantages, disadvantages, and application scopes, aiming to provide researchers with insights through which to understand the limitations, contexts, and effective selections of protein structure prediction methods in protein-related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助哈哈采纳,获得10
4秒前
4秒前
领导范儿应助认真的元枫采纳,获得10
4秒前
喷火龙完成签到,获得积分10
5秒前
zlf关闭了zlf文献求助
5秒前
善学以致用应助逢写必中采纳,获得10
7秒前
制冷剂完成签到 ,获得积分10
7秒前
ningwu完成签到,获得积分10
8秒前
13秒前
璨澄完成签到 ,获得积分10
13秒前
mm完成签到 ,获得积分10
14秒前
哈哈发布了新的文献求助10
17秒前
今后应助材料生采纳,获得10
19秒前
21秒前
24秒前
情怀应助活力的晓夏采纳,获得10
26秒前
无花果应助火星上的书竹采纳,获得30
28秒前
wenqing完成签到,获得积分10
28秒前
311完成签到,获得积分10
32秒前
33秒前
37秒前
小鹿嘻嘻发布了新的文献求助10
39秒前
40秒前
41秒前
woleaisa发布了新的文献求助10
41秒前
wuhao完成签到,获得积分10
43秒前
zlf发布了新的文献求助10
44秒前
不安青牛应助科研通管家采纳,获得10
45秒前
852应助科研通管家采纳,获得10
45秒前
隐形曼青应助拉扣采纳,获得10
53秒前
子凡完成签到 ,获得积分10
54秒前
56秒前
淡漠完成签到 ,获得积分10
57秒前
58秒前
bioglia完成签到,获得积分10
59秒前
1分钟前
AlwaysKim发布了新的文献求助10
1分钟前
渊_完成签到 ,获得积分10
1分钟前
zlf完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482161
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388474
捐赠科研通 4511969
什么是DOI,文献DOI怎么找? 2472656
邀请新用户注册赠送积分活动 1458923
关于科研通互助平台的介绍 1432309