Recent Progress of Protein Tertiary Structure Prediction

卡斯普 蛋白质结构预测 计算机科学 人工智能 蛋白质结构 蛋白质三级结构 领域(数学) 机器学习 蛋白质折叠 生物 数学 生物化学 纯数学
作者
Qiqige Wuyun,Yihan Chen,Yifeng Shen,Yang Cao,Gang Hu,Wei Cui,Jianzhao Gao,Wei Zheng
出处
期刊:Molecules [Multidisciplinary Digital Publishing Institute]
卷期号:29 (4): 832-832 被引量:7
标识
DOI:10.3390/molecules29040832
摘要

The prediction of three-dimensional (3D) protein structure from amino acid sequences has stood as a significant challenge in computational and structural bioinformatics for decades. Recently, the widespread integration of artificial intelligence (AI) algorithms has substantially expedited advancements in protein structure prediction, yielding numerous significant milestones. In particular, the end-to-end deep learning method AlphaFold2 has facilitated the rise of structure prediction performance to new heights, regularly competitive with experimental structures in the 14th Critical Assessment of Protein Structure Prediction (CASP14). To provide a comprehensive understanding and guide future research in the field of protein structure prediction for researchers, this review describes various methodologies, assessments, and databases in protein structure prediction, including traditionally used protein structure prediction methods, such as template-based modeling (TBM) and template-free modeling (FM) approaches; recently developed deep learning-based methods, such as contact/distance-guided methods, end-to-end folding methods, and protein language model (PLM)-based methods; multi-domain protein structure prediction methods; the CASP experiments and related assessments; and the recently released AlphaFold Protein Structure Database (AlphaFold DB). We discuss their advantages, disadvantages, and application scopes, aiming to provide researchers with insights through which to understand the limitations, contexts, and effective selections of protein structure prediction methods in protein-related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NorthWang发布了新的文献求助10
1秒前
所所应助科研通管家采纳,获得10
2秒前
leaolf应助科研通管家采纳,获得10
2秒前
勤奋尔丝完成签到 ,获得积分10
2秒前
传奇3应助lee采纳,获得30
2秒前
BioGO发布了新的文献求助10
2秒前
时尚半仙完成签到 ,获得积分10
4秒前
奋斗奋斗再奋斗完成签到,获得积分10
5秒前
5秒前
MYZ完成签到,获得积分10
6秒前
趙途嘵生完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
11秒前
蔡从安发布了新的文献求助10
11秒前
合适否而非完成签到,获得积分10
12秒前
我思故我在完成签到,获得积分10
12秒前
sule完成签到,获得积分10
14秒前
MM完成签到,获得积分10
16秒前
aging00发布了新的文献求助10
16秒前
17秒前
18秒前
酷波er应助蔡从安采纳,获得10
19秒前
爆米花应助蔡从安采纳,获得10
19秒前
量子星尘发布了新的文献求助10
22秒前
米博士完成签到,获得积分10
22秒前
lee发布了新的文献求助30
23秒前
23秒前
大脸猫完成签到 ,获得积分10
25秒前
26秒前
加了个浩完成签到,获得积分10
28秒前
微笑芒果完成签到 ,获得积分0
28秒前
叛逆黑洞完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
超级砖家完成签到,获得积分10
31秒前
shiluodeqiou完成签到,获得积分10
33秒前
mayberichard完成签到,获得积分10
34秒前
36秒前
LIUJIE完成签到,获得积分10
37秒前
alixy完成签到,获得积分10
38秒前
End完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597530
求助须知:如何正确求助?哪些是违规求助? 4009101
关于积分的说明 12409876
捐赠科研通 3688331
什么是DOI,文献DOI怎么找? 2033101
邀请新用户注册赠送积分活动 1066366
科研通“疑难数据库(出版商)”最低求助积分说明 951605