Recent Progress of Protein Tertiary Structure Prediction

卡斯普 蛋白质结构预测 计算机科学 人工智能 蛋白质结构 蛋白质三级结构 领域(数学) 机器学习 结构生物信息学 蛋白质折叠 生物 数学 生物化学 纯数学
作者
Qiqige Wuyun,Yihan Chen,Yifeng Shen,Yang Cao,Gang Hu,Wei Cui,Jianzhao Gao,Wei Zheng
出处
期刊:Molecules [MDPI AG]
卷期号:29 (4): 832-832 被引量:20
标识
DOI:10.3390/molecules29040832
摘要

The prediction of three-dimensional (3D) protein structure from amino acid sequences has stood as a significant challenge in computational and structural bioinformatics for decades. Recently, the widespread integration of artificial intelligence (AI) algorithms has substantially expedited advancements in protein structure prediction, yielding numerous significant milestones. In particular, the end-to-end deep learning method AlphaFold2 has facilitated the rise of structure prediction performance to new heights, regularly competitive with experimental structures in the 14th Critical Assessment of Protein Structure Prediction (CASP14). To provide a comprehensive understanding and guide future research in the field of protein structure prediction for researchers, this review describes various methodologies, assessments, and databases in protein structure prediction, including traditionally used protein structure prediction methods, such as template-based modeling (TBM) and template-free modeling (FM) approaches; recently developed deep learning-based methods, such as contact/distance-guided methods, end-to-end folding methods, and protein language model (PLM)-based methods; multi-domain protein structure prediction methods; the CASP experiments and related assessments; and the recently released AlphaFold Protein Structure Database (AlphaFold DB). We discuss their advantages, disadvantages, and application scopes, aiming to provide researchers with insights through which to understand the limitations, contexts, and effective selections of protein structure prediction methods in protein-related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咕噜发布了新的文献求助10
刚刚
1秒前
小马甲应助一块木头采纳,获得10
2秒前
小二郎应助白鸿瑞采纳,获得10
2秒前
LT关闭了LT文献求助
2秒前
屹舟完成签到 ,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
yiyi完成签到,获得积分10
3秒前
万能图书馆应助Linsey采纳,获得10
4秒前
义气的水蓝应助逆光采纳,获得50
4秒前
Butterfly完成签到,获得积分10
4秒前
4秒前
5秒前
倪好发布了新的文献求助10
6秒前
满意曼荷应助majf采纳,获得10
6秒前
7秒前
无极微光应助SICHEN采纳,获得20
8秒前
含糊的幻姬应助11采纳,获得10
8秒前
Akim应助好运6连采纳,获得10
8秒前
Hupoo完成签到,获得积分10
9秒前
9秒前
9秒前
清新的易真完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
沉静怀绿完成签到,获得积分20
10秒前
www驳回了汉堡包应助
11秒前
12秒前
12秒前
12秒前
zhaopenghui发布了新的文献求助10
12秒前
13秒前
刻苦凡完成签到,获得积分10
14秒前
HZC发布了新的文献求助10
15秒前
15秒前
赵才猫发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
xix发布了新的文献求助20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490477
求助须知:如何正确求助?哪些是违规求助? 4589000
关于积分的说明 14422947
捐赠科研通 4521048
什么是DOI,文献DOI怎么找? 2477109
邀请新用户注册赠送积分活动 1462474
关于科研通互助平台的介绍 1435306