CRA-Net: Transformer guided category-relation attention network for diabetic retinopathy grading

分级(工程) 计算机科学 人工智能 病变 糖尿病性视网膜病变 弹性网正则化 模式识别(心理学) 机器学习 医学 病理 土木工程 工程类 糖尿病 内分泌学 特征选择
作者
Feng Zang,Hui Ma
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 107993-107993 被引量:33
标识
DOI:10.1016/j.compbiomed.2024.107993
摘要

Automated grading of diabetic retinopathy (DR) is an important means for assisting clinical diagnosis and preventing further retinal damage. However, imbalances and similarities between categories in the DR dataset make it highly challenging to accurately grade the severity of the condition. Furthermore, DR images encompass various lesions, and the pathological relationship information among these lesions can be easily overlooked. For instance, under different severity levels, the varying contributions of different lesions to accurate model grading differ significantly. To address the aforementioned issues, we design a transformer guided category-relation attention network (CRA-Net). Specifically, we propose a novel category attention block that enhances feature information within the class from the perspective of DR image categories, thereby alleviating class imbalance problems. Additionally, we design a lesion relation attention block that captures relationships between lesions by incorporating attention mechanisms in two primary aspects: capsule attention models the relative importance of different lesions, allowing the model to focus on more "informative" ones. Spatial attention captures the global position relationship between lesion features under transformer guidance, facilitating more accurate localization of lesions. Experimental and ablation studies on two datasets DDR and APTOS 2019 demonstrate the effectiveness of CRA-Net and obtain competitive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Walton完成签到,获得积分10
刚刚
cl完成签到,获得积分10
刚刚
sheep完成签到,获得积分10
刚刚
Bake完成签到 ,获得积分10
刚刚
surlamper完成签到,获得积分10
1秒前
Mo完成签到,获得积分10
1秒前
hahaha2完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
婉枫完成签到,获得积分10
2秒前
徐彬荣完成签到,获得积分10
2秒前
往昔不过微澜完成签到,获得积分10
2秒前
spider534完成签到,获得积分10
3秒前
好好应助科研通管家采纳,获得10
3秒前
好好应助科研通管家采纳,获得10
3秒前
好好应助科研通管家采纳,获得10
3秒前
好好应助科研通管家采纳,获得10
3秒前
3秒前
好好应助科研通管家采纳,获得10
3秒前
3秒前
TGU的小马同学完成签到 ,获得积分10
3秒前
3秒前
3秒前
量子咸鱼K完成签到,获得积分10
4秒前
冰冻芋头完成签到,获得积分10
4秒前
hahaha1完成签到,获得积分10
4秒前
fate完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
changjinglu发布了新的文献求助10
8秒前
风信子deon01完成签到,获得积分10
8秒前
Daisy发布了新的文献求助10
12秒前
追梦人2016完成签到 ,获得积分10
12秒前
suiyue完成签到 ,获得积分10
13秒前
杏林靴子完成签到,获得积分10
13秒前
酷波er应助jdjf采纳,获得10
13秒前
19秒前
20秒前
weila完成签到 ,获得积分10
23秒前
jie完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664739
求助须知:如何正确求助?哪些是违规求助? 4868979
关于积分的说明 15108502
捐赠科研通 4823434
什么是DOI,文献DOI怎么找? 2582356
邀请新用户注册赠送积分活动 1536359
关于科研通互助平台的介绍 1494797