Pre‐endcapping of Hyperbranched Polymers toward Intrinsically Stretchable Semiconductors with Good Ductility and Carrier Mobility

材料科学 聚合物 纳米技术 半导体 延展性(地球科学) 高分子科学 复合材料 光电子学 蠕动
作者
Zhaoqiong Zhou,Nan Luo,Tianqiang Cui,Liang Luo,Mingrui Pu,Ying Wang,Feng He,Chunyang Jia,Xiangfeng Shao,Hao‐Li Zhang,Zitong Liu
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202313312
摘要

Abstract The advancement of semiconducting polymers stands as a pivotal milestone in the quest to realize wearable electronics. Nonetheless, endowing semiconductor polymers with stretchability without compromising their carrier mobility remains a formidable challenge. This study proposes a “pre‐endcapping” strategy for synthesizing hyperbranched semiconducting polymers ( HBSP s), aiming to achieve the balance between carrier mobility and stretchability for organic electronics. The findings unveil that the aggregates formed by the endcapped hyperbranched network structure not only ensure efficient charge transport, but also demonstrate superior tensile resistance. In comparison to linear conjugated polymers, HBSP s exhibit substantially larger crack onset strains and notably diminished tensile moduli. It is evident that the HBSP s surpass their linear counterparts in terms of both their semiconducting and mechanical properties. Among HBSP s, HBSP‐72h‐2.5 stands out as the preeminent candidate within the field of inherently stretchable semiconducting polymers, maintaining 93% of its initial mobility even when subjected to 100% strain (1.41±0.206 cm 2 V −1 s −1 ). Furthermore, thin film devices of HBSP‐72h‐2.5 remain stable after undergoing repeated stretching and releasing cycles. Notably, the mobilities are independent of the stretching directions, showing isotropic charge transport behavior. The preliminary study makes this “pre‐endcapping” strategy a potential candidate for future design of organic materials for flexible electronic devices. This article is protected by copyright. All rights reserved
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sivan完成签到,获得积分10
刚刚
搞科研的小腻腻完成签到,获得积分10
1秒前
1秒前
七叶树完成签到,获得积分10
1秒前
星辰大海应助一颗小纽扣采纳,获得10
2秒前
2秒前
3秒前
3秒前
神勇丹烟完成签到 ,获得积分10
3秒前
keyantong发布了新的文献求助30
3秒前
张张发布了新的文献求助20
3秒前
zhai发布了新的文献求助20
3秒前
王小二775完成签到 ,获得积分10
4秒前
科研通AI2S应助Can采纳,获得10
4秒前
魔幻沛菡完成签到 ,获得积分10
4秒前
莫迟发布了新的文献求助10
5秒前
bnugongxue完成签到,获得积分10
5秒前
彭于晏应助奕初阳采纳,获得10
5秒前
1234完成签到,获得积分10
5秒前
婳祎完成签到 ,获得积分10
6秒前
Miller应助WHY采纳,获得10
6秒前
王灿灿发布了新的文献求助10
6秒前
英俊的铭应助nengzou采纳,获得10
6秒前
bkagyin应助fanfan采纳,获得10
6秒前
兴奋仙人掌完成签到,获得积分10
6秒前
7秒前
7秒前
可爱的函函应助qtedd采纳,获得10
7秒前
老天师一巴掌完成签到 ,获得积分10
8秒前
XP完成签到,获得积分10
8秒前
Valar发布了新的文献求助10
8秒前
1234发布了新的文献求助10
8秒前
像猫的狗完成签到 ,获得积分10
8秒前
9秒前
鲤鱼晓灵发布了新的文献求助10
9秒前
时光倒流的鱼完成签到,获得积分10
9秒前
典雅的寄凡完成签到 ,获得积分10
9秒前
10秒前
见贤思齐完成签到,获得积分10
10秒前
Akim应助善良的万恶采纳,获得30
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147394
求助须知:如何正确求助?哪些是违规求助? 2798622
关于积分的说明 7830067
捐赠科研通 2455346
什么是DOI,文献DOI怎么找? 1306770
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587