纳米片
电合成
材料科学
电极
电流(流体)
电流密度
纤维
纳米技术
光电子学
化学工程
复合材料
化学
电化学
电气工程
物理化学
工程类
物理
量子力学
作者
Zhe Meng,Fang Wang,Zhengguo Zhang,Shixiong Min
出处
期刊:Nanoscale
[Royal Society of Chemistry]
日期:2023-12-21
卷期号:16 (5): 2295-2302
被引量:6
摘要
While high current density formate (HCOO-) electrosynthesis from CO2 reduction has been achieved in a flow cell assembly, the inevitable flooding and salt precipitation of traditional gas-diffusion electrodes (GDEs) severely limit the overall energy efficiency and stability. In this work, an integrated gas-penetrable electrode (GPE) for HCOO- electrosynthesis was developed by coaxially growing vertically aligned high density Bi nanosheet arrays on a porous Cu hollow fiber (Bi NSAs@Cu HF) via controllable galvanic replacement. The interior porous Cu HF serves as a robust gas-penetrable and conductive host for continuously delivering CO2 gas to surface-anchored Bi NSAs, resulting in numerous well-balanced triphase active interfaces for the electrocatalytic CO2 reduction reaction (CO2RR). The most active Bi NSAs@Cu HF GPE exhibits a high HCOO- faradaic efficiency (FEHCOO-) of over 80% in a wide potential window (330 mV) with a linearly increased partial current density (jHCOO-) up to -261.6 mA cm-2 at -1.11 V vs. the reversible hydrogen electrode (RHE). The Bi NSAs@Cu HF GPE also sustains a FEHCOO- of >80% at a high total current density of -300 mA cm-2, corresponding to a jHCOO- of >-240 mA cm-2, for more than 60 h. This work provides new perspectives on designing efficient and durable integrated GPEs for a sustainable CO2RR on a large scale.
科研通智能强力驱动
Strongly Powered by AbleSci AI