FSE-Net: Rethinking the up-sampling operation in encoder-decoder structure for retinal vessel segmentation

计算机科学 分割 人工智能 特征(语言学) 编码器 模式识别(心理学) 残余物 计算机视觉 块(置换群论) 算法 数学 几何学 操作系统 哲学 语言学
作者
Jiajia Ni,Wei Mu,Anqi Pan,Zhengming Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105861-105861 被引量:5
标识
DOI:10.1016/j.bspc.2023.105861
摘要

Automatic retinal vessel segmentation plays a crucial role in the diagnosis and assessment of various ophthalmologic diseases. Currently, the primary retinal vessel segmentation algorithms are based on the encoder-decoder structure. However, these U-Net analogs suffer from the loss of both spatial and semantic information, caused by continuous up-sampling operations in the decoder structure. In this paper, we rethink the above problem and build a novel deep neural network for retinal vessel segmentation, called FSE-Net. Specifically, to address the issue of feature information loss and enhance the performance of retinal vessel segmentation, we eliminate the decoder structure. In particular, we introduced a multi-head feature fusion block (MFF) as a substitute for the continuous up-sampling operation. Additionally, the encoder stage of FSE-Net incorporates a residual feature separable block (RFSB) to further refine and distill features, thereby enhancing the capability of feature extraction. Subsequently, we employ a residual atrous spatial feature aggregate module (RASF) to expand the network's receptive field by incorporating multi-scale feature information. We conducted experiments on five widely recognized databases for retinal vessel segmentation, namely DRIVE, CHASEDB1, STARE, IOSTAR, and LES-AV. The results demonstrate that our proposed FSE-Net outperforms state-of-the-art approaches in terms of segmentation performance. Moreover, we demonstrate the feasibility of achieving superior segmentation performance without employing the traditional U-Net analog network structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷谷完成签到 ,获得积分20
刚刚
刚刚
852应助夏夜繁星采纳,获得10
刚刚
SSY发布了新的文献求助20
1秒前
1秒前
玉灵子完成签到,获得积分20
1秒前
斯文败类应助gs采纳,获得10
1秒前
今后应助淀粉采纳,获得10
1秒前
彭于晏应助聪明的小玉采纳,获得10
3秒前
活力太兰发布了新的文献求助10
3秒前
long发布了新的文献求助10
3秒前
玉灵子发布了新的文献求助10
4秒前
思思完成签到,获得积分10
5秒前
5秒前
rwanq发布了新的文献求助10
5秒前
6秒前
李爱国应助linkman采纳,获得10
6秒前
JamesPei应助linkman采纳,获得10
6秒前
王侯将相关注了科研通微信公众号
6秒前
Owen应助linkman采纳,获得10
6秒前
7秒前
大模型应助zyz采纳,获得10
7秒前
7秒前
7秒前
花生仔应助清明采纳,获得10
8秒前
9秒前
及尔完成签到,获得积分10
10秒前
闪闪小小发布了新的文献求助10
10秒前
Chen发布了新的文献求助10
11秒前
英俊的铭应助山复尔尔采纳,获得10
12秒前
兴奋的定帮应助jdfyttk采纳,获得10
12秒前
褚忆灵完成签到,获得积分10
12秒前
SSY完成签到,获得积分10
12秒前
12秒前
Sheng发布了新的文献求助200
12秒前
完美世界应助新野采纳,获得10
13秒前
ZXDDDD发布了新的文献求助10
13秒前
锐哥发布了新的文献求助10
14秒前
墨兮完成签到 ,获得积分10
15秒前
CipherSage应助lvjiahui采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203