Individual nursery trees classification and segmentation using a point cloud-based neural network with dense connection pattern

连接(主束) 分割 人工神经网络 点云 人工智能 点(几何) 模式识别(心理学) 计算机科学 数学 几何学
作者
Jie Xu,Hui Liu,Yue Shen,Xiao Zeng,Xinpeng Zheng
出处
期刊:Scientia Horticulturae [Elsevier]
卷期号:328: 112945-112945 被引量:2
标识
DOI:10.1016/j.scienta.2024.112945
摘要

Nurseries are used to cultivate a variety of tree species. Obtaining some specific information like the tree species, positions of crowns and trunks can enhance the efficacy of nursery management. Due to the robustness to illumination, the point cloud-based neural network models have become extensively employed in segmenting and classifying individual trees from large-scale data. However, few studies have focused on further processing the point clouds of individual trees. Therefore, D-PointNet++ (Dense PointNet++) is proposed in this paper for classifying tree species and segmenting different parts of trees (crowns, trunks, pots and supporting poles). D-PointNet++ utilizes a dense connection pattern in the feature extraction module, inspired by the architecture of DenseNet. Additionally, the proposed model uses a gating system and concatenation as fusion operations to combine point cloud features with different dimensions to improve accuracy. The point cloud data of seven different types of garden trees in the nursery was collected using a laser sensor. The experimental results demonstrate that D-PointNet++ surpasses two representative baseline methods, PointNet and PointNet++, in terms of both classification and segmentation accuracy. For the self-made nursery dataset, the classification overall accuracy (OA) and class accuracy (mAcc) of D-PointNet++ can reach 92.65% and 92.54%; the average Intersection over Union (mIoU) and mAcc can reach 89.90% and 92.18%, respectively. The proposed D-PointNet++ can provide more accurate information on each tree and is beneficial to the management of the nursery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七爱学习完成签到,获得积分10
刚刚
卡牌大师完成签到,获得积分10
刚刚
wanci应助Lucky采纳,获得10
刚刚
Akim应助caicailang84采纳,获得10
1秒前
滴滴滴发布了新的文献求助10
1秒前
MR_Z完成签到,获得积分10
1秒前
DHY完成签到,获得积分10
1秒前
逗你玩完成签到,获得积分20
1秒前
2秒前
聪明眼睛完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
在水一方应助一二三采纳,获得10
4秒前
dd完成签到,获得积分10
4秒前
我是老大应助大厨懒洋洋采纳,获得10
4秒前
5秒前
醉烟雨发布了新的文献求助20
5秒前
5秒前
6秒前
咿呀发布了新的文献求助10
6秒前
小二郎应助束一德采纳,获得10
6秒前
辛勤的志泽完成签到,获得积分10
7秒前
8秒前
8秒前
DTL哈哈发布了新的文献求助10
8秒前
wang完成签到,获得积分10
9秒前
YMH完成签到,获得积分10
9秒前
李健应助123456采纳,获得10
9秒前
10秒前
10秒前
10秒前
dd发布了新的文献求助10
10秒前
11秒前
11秒前
共享精神应助逗你玩采纳,获得10
12秒前
12秒前
13秒前
SN完成签到,获得积分10
13秒前
奔跑的考拉完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123270
求助须知:如何正确求助?哪些是违规求助? 2773756
关于积分的说明 7719288
捐赠科研通 2429428
什么是DOI,文献DOI怎么找? 1290306
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251