Individual nursery trees classification and segmentation using a point cloud-based neural network with dense connection pattern

分割 点云 人工智能 树(集合论) 模式识别(心理学) 稳健性(进化) 计算机科学 数学 数学分析 生物化学 化学 基因
作者
Jie Xu,Hui Liu,Yue Shen,Xiao Zeng,Xinpeng Zheng
出处
期刊:Scientia Horticulturae [Elsevier BV]
卷期号:328: 112945-112945 被引量:3
标识
DOI:10.1016/j.scienta.2024.112945
摘要

Nurseries are used to cultivate a variety of tree species. Obtaining some specific information like the tree species, positions of crowns and trunks can enhance the efficacy of nursery management. Due to the robustness to illumination, the point cloud-based neural network models have become extensively employed in segmenting and classifying individual trees from large-scale data. However, few studies have focused on further processing the point clouds of individual trees. Therefore, D-PointNet++ (Dense PointNet++) is proposed in this paper for classifying tree species and segmenting different parts of trees (crowns, trunks, pots and supporting poles). D-PointNet++ utilizes a dense connection pattern in the feature extraction module, inspired by the architecture of DenseNet. Additionally, the proposed model uses a gating system and concatenation as fusion operations to combine point cloud features with different dimensions to improve accuracy. The point cloud data of seven different types of garden trees in the nursery was collected using a laser sensor. The experimental results demonstrate that D-PointNet++ surpasses two representative baseline methods, PointNet and PointNet++, in terms of both classification and segmentation accuracy. For the self-made nursery dataset, the classification overall accuracy (OA) and class accuracy (mAcc) of D-PointNet++ can reach 92.65% and 92.54%; the average Intersection over Union (mIoU) and mAcc can reach 89.90% and 92.18%, respectively. The proposed D-PointNet++ can provide more accurate information on each tree and is beneficial to the management of the nursery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wcx发布了新的文献求助10
1秒前
晓晓完成签到,获得积分20
5秒前
欢呼的书南完成签到,获得积分10
6秒前
善学以致用应助ZZP27采纳,获得10
7秒前
Zz完成签到 ,获得积分10
8秒前
FleeToMars完成签到 ,获得积分10
9秒前
晓晓发布了新的文献求助10
11秒前
11秒前
kirin完成签到 ,获得积分10
13秒前
13秒前
清新的白卉完成签到 ,获得积分10
15秒前
天天快乐应助大大小采纳,获得20
20秒前
炎星语发布了新的文献求助10
20秒前
mtfx完成签到 ,获得积分10
22秒前
哒哒猪发布了新的文献求助10
23秒前
WANG完成签到,获得积分10
24秒前
wcx完成签到,获得积分10
24秒前
眼睛大雨筠应助hsx采纳,获得30
25秒前
Hello应助yu采纳,获得10
26秒前
27秒前
大个应助Jiangzhibing采纳,获得10
33秒前
37秒前
匡佐英完成签到,获得积分20
38秒前
刘小源完成签到 ,获得积分10
39秒前
yu发布了新的文献求助10
40秒前
HWJ发布了新的文献求助10
40秒前
帅五进九发布了新的文献求助10
44秒前
nini907完成签到,获得积分20
45秒前
乐乐应助Hey采纳,获得10
45秒前
46秒前
jjamazing应助一碗小米饭采纳,获得10
46秒前
调皮的千万完成签到,获得积分10
46秒前
ZL完成签到 ,获得积分10
48秒前
48秒前
yu完成签到,获得积分10
49秒前
51秒前
无味发布了新的文献求助10
53秒前
nini907发布了新的文献求助10
54秒前
XU发布了新的文献求助10
56秒前
57秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003