Reinforcement Learning and PK‐PD Models Integration to Personalize the Adaptive Dosing Protocol of Erdafitinib in Patients with Metastatic Urothelial Carcinoma

加药 协议(科学) 人口 强化学习 医学 药效学 计算机科学 药代动力学 肿瘤科 人工智能 药理学 病理 环境卫生 替代医学
作者
Alessandro De Carlo,Elena M. Tosca,Martina Fantozzi,Paolo Magni
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
卷期号:115 (4): 825-838 被引量:3
标识
DOI:10.1002/cpt.3176
摘要

The integration of pharmacokinetic‐pharmacodynamic (PK‐PD) modeling and simulations with artificial intelligence/machine learning algorithms is one of the most attractive areas of the pharmacometric research. These hybrid techniques are currently under investigation to perform several tasks, among which precision dosing. In this scenario, this paper presents and evaluates a new framework embedding PK‐PD models into a reinforcement learning (RL) algorithm, Q‐learning (QL), to personalize pharmacological treatment. Each patient is represented with a set of PK‐PD parameters and has a personal QL agent which optimizes the individual treatment. In the training phase, leveraging PK‐PD simulations, the QL agent assesses different actions, defined consistently with the clinical knowledge to consider only plausible dose‐adjustments, in order to find the optimal rules. The proposed framework was evaluated to optimize the erdafitinib treatment in patients with metastatic urothelial carcinoma. This drug was approved by the US Food and Drug Administration (FDA) with a dose‐adaptive protocol based on monitoring the levels of serum phosphate, which represent a biomarker of both treatment efficacy and toxicity. To evaluate the flexibility of the methodology, a heterogeneous virtual population of 141 patients was generated using an erdafitinib population PK (PopPK)‐PD literature model. For each patient, treatment response was simulated by using both QL‐optimized protocol and the clinical one. QL agents outperform the approved dose‐adaptive rules, increasing more than 10% the efficacy and the safety of treatment at each end point. Results confirm the great potentialities of the integration of PopPK‐PD models and RL algorithms to optimize precision dosing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小静发布了新的文献求助10
1秒前
3秒前
swzzaf发布了新的文献求助10
4秒前
Joe发布了新的文献求助10
4秒前
烟花应助积极羽毛采纳,获得10
5秒前
施小好完成签到,获得积分10
5秒前
霖昭发布了新的文献求助10
5秒前
宠辱不惊完成签到,获得积分10
6秒前
6秒前
端庄擎汉完成签到,获得积分20
9秒前
syqlyd完成签到 ,获得积分10
9秒前
10秒前
胖虎发布了新的文献求助10
10秒前
霖昭完成签到,获得积分10
11秒前
努力完成签到,获得积分10
11秒前
12秒前
14秒前
14秒前
CodeCraft应助一页采纳,获得10
14秒前
cxwcn完成签到,获得积分10
15秒前
清浔发布了新的文献求助20
15秒前
15秒前
CipherSage应助Joe采纳,获得10
15秒前
情怀应助火星上的亦寒采纳,获得10
16秒前
loen发布了新的文献求助10
16秒前
笨笨的弱完成签到 ,获得积分10
16秒前
yyyyou完成签到,获得积分10
17秒前
lee发布了新的文献求助10
18秒前
18秒前
深情安青应助爱学习的YY采纳,获得10
18秒前
积极羽毛发布了新的文献求助10
19秒前
念白发布了新的文献求助10
19秒前
19秒前
小芳应助施小好采纳,获得10
19秒前
爱学习的YY完成签到 ,获得积分10
20秒前
沉静大有应助端庄的正豪采纳,获得10
22秒前
xxxx发布了新的文献求助10
22秒前
23秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334609
求助须知:如何正确求助?哪些是违规求助? 2963868
关于积分的说明 8611689
捐赠科研通 2642793
什么是DOI,文献DOI怎么找? 1446965
科研通“疑难数据库(出版商)”最低求助积分说明 670499
邀请新用户注册赠送积分活动 658693