亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inside the “brain” of an artificial neural network: an interpretable deep learning approach to paroxysmal atrial fibrillation diagnosis from electrocardiogram signals during sinus rhythm

人工智能 医学 窦性心律 阵发性心房颤动 试验装置 人工神经网络 深度学习 集合(抽象数据类型) 正常窦性心律 数据集 机器学习 模式识别(心理学) 心房颤动 召回 计算机科学 内科学 哲学 程序设计语言 语言学
作者
Panteleimon Pantelidis,Eleni Oikonomou,Stamatios Lampsas,Nektarios Souvaliotis,Μichael Spartalis,Manolis Vavuranakis,Maria Bampa,Panagiotis Papapetrou,Gerasimos Siasos,Michael Vavuranakis
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:43 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehac544.2781
摘要

Abstract Background With the ongoing, rapid advances in Deep Learning (DL), such solutions can now detect medical conditions even invisible to the human eye. In this direction, efforts have been made to develop DL algorithms that diagnose paroxysmal atrial fibrillation (PAF) from electrocardiogram (ECG) signals in sinus rhythm (SR). However, many of the available approaches function as “black boxes”, with physicians unable to understand and trust their predictions. Purpose To train a DL model to detect PAF patients while in SR and apply an algorithm that interprets and visualises its decisions. Methods We obtained ECG samples from PAF and non-PAF patients during SR, from the PAF Prediction Challenge Database. After discarding unannotated samples and augmenting the sample size (by dividing each signal into 30-second segments), we split the whole dataset into a train (68%), a validation (16%) and a test (16%) set. No pair of samples belonging to different sets originated from the same patient. We trained the InceptionTime neural network on the train/validation sets and tested on the “unseen” test set after “hiding” the correct answers. Its performance was evaluated with the following metrics: Accuracy, f1-score, precision and recall (sensitivity). After repeating this process 20 times, we obtained a distribution for each score. Finally, we adjusted the Grad-CAM interpretation algorithm to our data and used it to visualise the areas perceived as important by the model. Results After pre-processing, 4,080, 30-second, two-lead ECG signals were allocated to the train set, 960 to the validation and 960 to the test set. Each subset contained an equal number of PAF and non-PAF samples. After repeated training and testing, we obtained a median accuracy of 0.84 (interquartile range, IQR: 0.66–0.88), an f1-score of 0.82 (IQR: 0.68–0.88) and a median precision and recall equal to 0.93 (IQR: 0.67–0.99) and 0.77 (IQR: 0.68–0.93), respectively. The Grad-CAM technique highlighted the ECG areas of interest that led to each decision. We selected and present both PAF-positive and -negative samples, perceived either correctly or falsely. Interestingly, correct model decisions tend to focus on the P-wave, while false ones fixate on other regions. Conclusions Although a pilot study with considerable limitations (small sample size, disregard of possible confounding due to comorbidities or other factors), this work shows how DL can be employed to distinguish between PAF and non-PAF patients from SR ECG samples, and confirms the potential of DL-enabled approaches to offer novel diagnostic capabilities. Most importantly, our effort provides a comprehensible, visual interpretation of the model's decisions. Demystifying DL behaviour can, not only improve such efforts by explaining false decisions, but also cultivate trust among clinicians and, possibly, point out directions for future research, since we can now see through the magnifying lens of a neural network. Funding Acknowledgement Type of funding sources: None.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cCc完成签到,获得积分10
5秒前
8秒前
科研通AI2S应助嘟嘟嘟嘟采纳,获得10
12秒前
朴素的如豹完成签到,获得积分10
17秒前
机智大白菜真实的钥匙完成签到,获得积分10
18秒前
NexusExplorer应助李响采纳,获得10
19秒前
bkagyin应助mmyhn采纳,获得10
20秒前
longh完成签到,获得积分10
20秒前
w_tiger完成签到 ,获得积分10
27秒前
飞快的孱完成签到,获得积分10
31秒前
31秒前
仙女完成签到 ,获得积分10
42秒前
潇潇雨歇完成签到,获得积分10
43秒前
汉堡包应助meikoo采纳,获得10
49秒前
科研通AI5应助科研通管家采纳,获得10
49秒前
深情安青应助科研通管家采纳,获得10
49秒前
目目应助科研通管家采纳,获得10
49秒前
Blank发布了新的文献求助10
1分钟前
1分钟前
Tender完成签到,获得积分10
1分钟前
kk发布了新的文献求助10
1分钟前
可爱的函函应助Blank采纳,获得10
1分钟前
lulu8809完成签到,获得积分10
1分钟前
1分钟前
今后应助木南采纳,获得10
1分钟前
meikoo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
韩雨桐发布了新的文献求助10
1分钟前
shl发布了新的文献求助10
1分钟前
1分钟前
CodeCraft应助shl采纳,获得30
1分钟前
1分钟前
1分钟前
FashionBoy应助yqf采纳,获得10
1分钟前
1分钟前
1分钟前
阿溪发布了新的文献求助10
1分钟前
yqf发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555687
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390713
捐赠科研通 2831030
什么是DOI,文献DOI怎么找? 1556295
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803