亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnosis of temporomandibular disorders using artificial intelligence technologies: A systematic review and meta-analysis

荟萃分析 医学 梅德林 系统回顾 疼痛 数据提取 人工智能 医学物理学 物理疗法 机器学习 计算机科学 病理 政治学 法学
作者
Nayansi Jha,Kwang‐Sig Lee,Yoon‐Ji Kim
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (8): e0272715-e0272715 被引量:39
标识
DOI:10.1371/journal.pone.0272715
摘要

Background Artificial intelligence (AI) algorithms have been applied to diagnose temporomandibular disorders (TMDs). However, studies have used different patient selection criteria, disease subtypes, input data, and outcome measures. Resultantly, the performance of the AI models varies. Objective This study aimed to systematically summarize the current literature on the application of AI technologies for diagnosis of different TMD subtypes, evaluate the quality of these studies, and assess the diagnostic accuracy of existing AI models. Materials and methods The study protocol was carried out based on the preferred reporting items for systematic review and meta-analysis protocols (PRISMA). The PubMed, Embase, and Web of Science databases were searched to find relevant articles from database inception to June 2022. Studies that used AI algorithms to diagnose at least one subtype of TMD and those that assessed the performance of AI algorithms were included. We excluded studies on orofacial pain that were not directly related to the TMD, such as studies on atypical facial pain and neuropathic pain, editorials, book chapters, and excerpts without detailed empirical data. The risk of bias was assessed using the QUADAS-2 tool. We used Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) to provide certainty of evidence. Results A total of 17 articles for automated diagnosis of masticatory muscle disorders, TMJ osteoarthrosis, internal derangement, and disc perforation were included; they were retrospective studies, case-control studies, cohort studies, and a pilot study. Seven studies were subjected to a meta-analysis for diagnostic accuracy. According to the GRADE, the certainty of evidence was very low. The performance of the AI models had accuracy and specificity ranging from 84% to 99.9% and 73% to 100%, respectively. The pooled accuracy was 0.91 (95% CI 0.76–0.99), I 2 = 97% (95% CI 0.96–0.98), p < 0.001. Conclusions Various AI algorithms developed for diagnosing TMDs may provide additional clinical expertise to increase diagnostic accuracy. However, it should be noted that a high risk of bias was present in the included studies. Also, certainty of evidence was very low. Future research of higher quality is strongly recommended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白菜完成签到,获得积分10
1秒前
淳恨战士完成签到,获得积分10
23秒前
25秒前
鲤鱼慕晴发布了新的文献求助10
30秒前
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
memory完成签到,获得积分10
1分钟前
1分钟前
喜悦的小土豆完成签到 ,获得积分10
1分钟前
酱豆豆完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
ataybabdallah发布了新的文献求助10
2分钟前
乐乐应助耍酷的吐司采纳,获得10
3分钟前
boytoa完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
manchang完成签到 ,获得积分10
5分钟前
共享精神应助chenchen采纳,获得10
5分钟前
5分钟前
JL完成签到 ,获得积分10
5分钟前
sunny发布了新的文献求助10
5分钟前
耍酷的吐司完成签到,获得积分10
6分钟前
英俊的铭应助sunny采纳,获得10
6分钟前
科研通AI5应助认真代灵采纳,获得10
6分钟前
sunny完成签到,获得积分10
6分钟前
6分钟前
chenchen发布了新的文献求助10
6分钟前
持卿应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
所所应助科研通管家采纳,获得10
6分钟前
持卿应助科研通管家采纳,获得10
6分钟前
小蘑菇应助科研通管家采纳,获得30
6分钟前
852应助狂奔的蜗牛采纳,获得10
7分钟前
7分钟前
爱听歌的悒完成签到 ,获得积分10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674414
求助须知:如何正确求助?哪些是违规求助? 3229731
关于积分的说明 9786993
捐赠科研通 2940242
什么是DOI,文献DOI怎么找? 1611830
邀请新用户注册赠送积分活动 761043
科研通“疑难数据库(出版商)”最低求助积分说明 736427