亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semantic-Oriented Feature Coupling Transformer for Vehicle Re-Identification in Intelligent Transportation System

计算机科学 变压器 特征提取 人工智能 编码器 模式识别(心理学) 工程类 电气工程 操作系统 电压
作者
Zhi Yu,Zhiyong Huang,Jiaming Pei,Lamia Tahsin,Daming Sun
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 2803-2813 被引量:11
标识
DOI:10.1109/tits.2023.3257873
摘要

More robust intelligent transportation systems including autonomous driving systems are in full flourish with the revolution of deep learning and the 6G wireless communication network. Vehicle Re-Identification, an indispensable branch of the intelligent transportation system, aims to retrieve specific vehicles captured from non-overlapping cameras. However, this is fundamentally challenging with the substantial inter-class similarity and substantial intra-class divergence. Embedding semantic information into vehicle re-identification task has gained ample interest, but the performance needs to be further improved. This work proposes a semantic-oriented feature coupling transformer (SOFCT) for vehicle re-identification as a solution. Specifically, the knowledge-based transformer is first embedded to model images with discriminative attributes. Second, original patches are divided into five semantic groups via semantics-patches coupling, and the feature extractions for different semantics are performed in the semantic feature extraction (SFE) transformer. Third, patch features are weighted via semantics-patches coupling in the patch feature weighting (PFW) transformer, the weighted feature is fed into subsequent encoders to excavate information. Finally, two groups of learnable semantics are embedded to automatically learn semantic features in the learnable semantic extraction (LSE) transformer. Experiments demonstrate that the proposed SOFCT method surpasses other state-of-the-arts with the mAP/Rank-1 of 80.7%/96.6%, 89.8%/84.5%, 86.4%/80.9%, and 84.3%/78.7% on VeRi776 and VehicleID.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yunlong完成签到 ,获得积分10
21秒前
yutang完成签到 ,获得积分0
36秒前
愉快谷芹完成签到 ,获得积分10
52秒前
小豆包完成签到 ,获得积分10
53秒前
1分钟前
suzy完成签到 ,获得积分10
1分钟前
1分钟前
maplesirup发布了新的文献求助10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
彭于晏应助maplesirup采纳,获得10
2分钟前
鹿呦完成签到 ,获得积分10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
JRALL完成签到 ,获得积分10
3分钟前
悠树里完成签到,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI2S应助Li采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
小强呐完成签到 ,获得积分10
4分钟前
啥时候吃火锅完成签到 ,获得积分0
5分钟前
天天快乐应助guan采纳,获得10
5分钟前
科研通AI2S应助Li采纳,获得10
5分钟前
呆萌念云完成签到 ,获得积分10
5分钟前
小乐完成签到 ,获得积分10
5分钟前
minnie完成签到 ,获得积分10
5分钟前
5分钟前
renjijiefuli应助叶子采纳,获得20
5分钟前
科研通AI2S应助Li采纳,获得10
5分钟前
5分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558506
求助须知:如何正确求助?哪些是违规求助? 4643579
关于积分的说明 14671229
捐赠科研通 4584872
什么是DOI,文献DOI怎么找? 2515221
邀请新用户注册赠送积分活动 1489290
关于科研通互助平台的介绍 1459885