Semantic-Oriented Feature Coupling Transformer for Vehicle Re-Identification in Intelligent Transportation System

计算机科学 变压器 特征提取 人工智能 编码器 模式识别(心理学) 工程类 电气工程 电压 操作系统
作者
Zhi Yu,Zhiyong Huang,Jiaming Pei,Lamia Tahsin,Daming Sun
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:4
标识
DOI:10.1109/tits.2023.3257873
摘要

More robust intelligent transportation systems including autonomous driving systems are in full flourish with the revolution of deep learning and the 6G wireless communication network. Vehicle Re-Identification, an indispensable branch of the intelligent transportation system, aims to retrieve specific vehicles captured from non-overlapping cameras. However, this is fundamentally challenging with the substantial inter-class similarity and substantial intra-class divergence. Embedding semantic information into vehicle re-identification task has gained ample interest, but the performance needs to be further improved. This work proposes a semantic-oriented feature coupling transformer (SOFCT) for vehicle re-identification as a solution. Specifically, the knowledge-based transformer is first embedded to model images with discriminative attributes. Second, original patches are divided into five semantic groups via semantics-patches coupling, and the feature extractions for different semantics are performed in the semantic feature extraction (SFE) transformer. Third, patch features are weighted via semantics-patches coupling in the patch feature weighting (PFW) transformer, the weighted feature is fed into subsequent encoders to excavate information. Finally, two groups of learnable semantics are embedded to automatically learn semantic features in the learnable semantic extraction (LSE) transformer. Experiments demonstrate that the proposed SOFCT method surpasses other state-of-the-arts with the mAP/Rank-1 of 80.7%/96.6%, 89.8%/84.5%, 86.4%/80.9%, and 84.3%/78.7% on VeRi776 and VehicleID.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sene发布了新的文献求助10
2秒前
red发布了新的文献求助10
2秒前
2秒前
3秒前
qise发布了新的文献求助10
3秒前
二个虎牙发布了新的文献求助10
4秒前
烈巴男爵完成签到,获得积分10
4秒前
无私书雪完成签到,获得积分10
4秒前
好困应助粗暴的冰露采纳,获得10
5秒前
小陈完成签到,获得积分10
5秒前
6秒前
6秒前
安可瓶子发布了新的文献求助10
6秒前
小蘑菇应助feb采纳,获得10
6秒前
7秒前
7秒前
李爱国应助fuyuan采纳,获得10
8秒前
摸摸头完成签到 ,获得积分10
8秒前
脑洞疼应助小李之家采纳,获得10
8秒前
传奇3应助安卉采纳,获得10
9秒前
香蕉子骞发布了新的文献求助10
9秒前
9秒前
钢铁加鲁鲁完成签到,获得积分0
9秒前
Zzzhu完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
书华发布了新的文献求助10
11秒前
清爽翠丝发布了新的文献求助10
11秒前
12秒前
Dexter完成签到,获得积分10
12秒前
可爱的函函应助xianyu24采纳,获得10
13秒前
13秒前
尼克狐尼克完成签到,获得积分20
14秒前
pass发布了新的文献求助10
14秒前
大白发布了新的文献求助10
14秒前
14秒前
wangyue发布了新的文献求助10
15秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143897
求助须知:如何正确求助?哪些是违规求助? 2795508
关于积分的说明 7815487
捐赠科研通 2451567
什么是DOI,文献DOI怎么找? 1304518
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419