间充质干细胞
姜黄素
脂肪性肝炎
氧化应激
脂肪肝
炎症
移植
水飞蓟宾
化学
药理学
癌症研究
免疫学
医学
生物化学
内科学
病理
疾病
作者
Gehan Abd-Elfatah Tawfeek,Hend Ahmed Kasem
标识
DOI:10.1016/j.trim.2023.101837
摘要
Mesenchymal stem cells (MSCs) derived exosomes (MSCs/Exo) is considered a new strategy in cell free regenerative therapy. Curcumin preconditioning of MSCs reported to improve the anti- inflammatory and immunomodulatory properties of MSCs. We investigated the efficacy of exosome (Exo) obtained from curcumin-preconditioned MSCs (MSCs/Exo-Cur) vs. MSC/Exo without curcumin to ameliorate and prevent recurrence of non-alcoholic fatty liver (NASH) disease. In-vivo, methionine/choline-deficient diet (MCD) induced mice non-alcoholic fatty liver disease (NASH) were injected with MSCs/Exo without curcumin or MSCs/Exo-Cur with curcumin. We found that mice treated with MSCs/Exo-Cur had significantly ameliorated steatosis, inflammation, as evaluated by the reduced fibrosis in histopathological examination, decreased the serum level of liver enzymes (p < 0.001), liver triglycerides (TG) (p < 0.001) and cholesterol (Ch) (p < 0.001) and increased the lipid peroxidation (p < 0.001) compared to MSCs/Exo-treated mice. These effects remained for 3 months after treatment in MSCs/Exo-Cur-treated mice while features of NASH returned in MSCs/Exo-treated group. In vitro, HepG2 cells were cultured with palmitic acid (PA) and treated with MSCs/Exo or MSCs/Exo-Cur: the MSCs/Exo-Cur exposure reversed the lipotoxic effect from 4.5 to 1.7 fold vs 4.0 fold in MSCs/Exo and oxidative stress in PA-treated HepG2 cells (p < 0.001). We found that MSCs/Exo-Cur regulated the key markers of inflammatory and oxidative stress, genes responsible for fibrogenesis of the liver, key genes of lipid synthesis and transport. Interestingly, MSCs/Exo-Cur significantly down regulated the ASK-JNK-BAX genes involved in mitochondrial stress and apoptosis compared to MSCs/Exo (p < 0.001). Our study indicated that exosomes derived from curcumin preconditioned MSCs were able to ameliorate and protect against recurrence of NASH and regulated inflammatory, oxidative stress and mitochondrial-dependent apoptosis ASK-JNK-BAX genes.
科研通智能强力驱动
Strongly Powered by AbleSci AI