Deep-learning-based path computation without routing convergence in optical satellite networks

计算机科学 静态路由 计算机网络 链路状态路由协议 路由表 多路径路由 多路径等成本路由 基于策略的路由 分布式计算 动态源路由 布线(电子设计自动化) 路由协议
作者
Yinji Jing,Longteng Yi,Yongli Zhao,Hua Wang,Wei Wang,Jie Zhang
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:15 (5): 294-294 被引量:9
标识
DOI:10.1364/jocn.474791
摘要

Low Earth orbit (LEO) satellite networks, which are composed of multiple inter-connected satellites, have become important infrastructure for future communications. Benefiting from the high bandwidth and anti-interference of satellite laser communication, optical satellite networks, in which satellite links are lasers, can provide global Internet services and have become a research trend. The orbit at a lower altitude has advantages such as low latency, low cost, and easy deployment in LEO optical satellite networks. Meanwhile, the movement of satellites is fast and thus will result in frequent changes for ground–satellite links. The conventional static routing strategy cannot perceive the network state; therefore, the static routing is inapplicable in the case of link failure or congestion. Dynamic routing can ensure the accuracy of the network connection by routing convergence. However, the routing table needs to be updated frequently because of the highly dynamic topology, resulting in the increase in signaling overhead. To compute routing paths accurately while reducing the update frequency of the routing table, this paper proposes a path computation model based on deep learning. By learning the mapping relation of previous services and the routing paths, the model can directly output the routing path according to the current service request. Using this method, the path computation tasks depend less on the frequently updated routing table. The simulation results show that the paths computed by the proposed method are almost the same as the paths computed by Dijkstra’s algorithm, the average accuracy rate is above 90%, and the highest accuracy rate can reach 98.8%. Compared with traditional path computation, the proposed method needs to collect a large amount of previous data for training, and the training time is about several hours.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzl008完成签到 ,获得积分10
刚刚
我是老大应助自信的冬日采纳,获得10
刚刚
尼古拉斯大唯完成签到,获得积分10
刚刚
YANA完成签到,获得积分10
1秒前
Star完成签到,获得积分10
1秒前
1秒前
2秒前
无名发布了新的文献求助10
3秒前
pophoo完成签到,获得积分10
3秒前
yuan完成签到 ,获得积分10
3秒前
3秒前
hzhang完成签到,获得积分10
4秒前
喜洋洋完成签到,获得积分20
4秒前
LEE123完成签到,获得积分10
4秒前
piglet发布了新的文献求助10
4秒前
4秒前
祖乐松完成签到,获得积分10
5秒前
lily336699完成签到,获得积分10
5秒前
lzk完成签到,获得积分10
5秒前
6秒前
luluyuan2010完成签到,获得积分10
6秒前
dxz完成签到,获得积分10
7秒前
喜悦香薇完成签到,获得积分10
7秒前
bkagyin应助秀丽笑容采纳,获得10
7秒前
无患子关注了科研通微信公众号
7秒前
guozi完成签到,获得积分10
7秒前
花火易逝完成签到,获得积分10
8秒前
GD88完成签到,获得积分10
8秒前
AimeeLau发布了新的文献求助10
9秒前
Hubery完成签到 ,获得积分10
10秒前
秋澄完成签到 ,获得积分10
10秒前
CodeCraft应助阿九采纳,获得10
10秒前
躺赢局局长完成签到 ,获得积分10
11秒前
12秒前
金虎发布了新的文献求助10
12秒前
lzl007完成签到 ,获得积分10
12秒前
selinann完成签到,获得积分10
13秒前
木木VV完成签到,获得积分10
13秒前
简单点完成签到 ,获得积分10
13秒前
得鹿梦鱼完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890