Deep-learning-based path computation without routing convergence in optical satellite networks

计算机科学 静态路由 计算机网络 链路状态路由协议 路由表 多路径路由 多路径等成本路由 基于策略的路由 分布式计算 动态源路由 布线(电子设计自动化) 路由协议
作者
Yinji Jing,Longteng Yi,Yongli Zhao,Hua Wang,Wei Wang,Jie Zhang
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:15 (5): 294-294 被引量:9
标识
DOI:10.1364/jocn.474791
摘要

Low Earth orbit (LEO) satellite networks, which are composed of multiple inter-connected satellites, have become important infrastructure for future communications. Benefiting from the high bandwidth and anti-interference of satellite laser communication, optical satellite networks, in which satellite links are lasers, can provide global Internet services and have become a research trend. The orbit at a lower altitude has advantages such as low latency, low cost, and easy deployment in LEO optical satellite networks. Meanwhile, the movement of satellites is fast and thus will result in frequent changes for ground–satellite links. The conventional static routing strategy cannot perceive the network state; therefore, the static routing is inapplicable in the case of link failure or congestion. Dynamic routing can ensure the accuracy of the network connection by routing convergence. However, the routing table needs to be updated frequently because of the highly dynamic topology, resulting in the increase in signaling overhead. To compute routing paths accurately while reducing the update frequency of the routing table, this paper proposes a path computation model based on deep learning. By learning the mapping relation of previous services and the routing paths, the model can directly output the routing path according to the current service request. Using this method, the path computation tasks depend less on the frequently updated routing table. The simulation results show that the paths computed by the proposed method are almost the same as the paths computed by Dijkstra’s algorithm, the average accuracy rate is above 90%, and the highest accuracy rate can reach 98.8%. Compared with traditional path computation, the proposed method needs to collect a large amount of previous data for training, and the training time is about several hours.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hellowa完成签到,获得积分10
1秒前
2秒前
YJ完成签到,获得积分20
2秒前
不甜完成签到 ,获得积分10
2秒前
阳光和煦轻风拂面完成签到 ,获得积分10
3秒前
sherry221完成签到,获得积分10
3秒前
未闻花名完成签到,获得积分10
4秒前
时光完成签到,获得积分10
5秒前
Gyy完成签到,获得积分10
5秒前
YJ发布了新的文献求助10
5秒前
明亮的遥完成签到 ,获得积分0
5秒前
蛋妞儿完成签到,获得积分10
6秒前
qwf完成签到 ,获得积分10
7秒前
edtaa完成签到 ,获得积分10
8秒前
烯灯完成签到,获得积分10
8秒前
8秒前
Ray完成签到,获得积分10
9秒前
10秒前
酷炫魂幽完成签到,获得积分10
10秒前
酱油C完成签到,获得积分10
11秒前
junfeiwang完成签到,获得积分10
11秒前
遮宁完成签到,获得积分10
11秒前
啦啦啦完成签到,获得积分10
13秒前
凌寻冬发布了新的文献求助10
13秒前
meng完成签到 ,获得积分10
14秒前
四叶草发布了新的文献求助10
14秒前
帅冰冰冰完成签到,获得积分10
14秒前
16秒前
廖天佑完成签到,获得积分0
16秒前
格子完成签到,获得积分10
16秒前
我是雅婷完成签到,获得积分10
16秒前
细腻怜容完成签到,获得积分10
17秒前
科研通AI2S应助kaka采纳,获得10
17秒前
chemier027完成签到,获得积分10
18秒前
18秒前
lpj完成签到,获得积分20
18秒前
好困完成签到,获得积分0
19秒前
starwan完成签到 ,获得积分10
19秒前
Hyunstar发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450543
求助须知:如何正确求助?哪些是违规求助? 3046046
关于积分的说明 9004222
捐赠科研通 2734753
什么是DOI,文献DOI怎么找? 1500107
科研通“疑难数据库(出版商)”最低求助积分说明 693369
邀请新用户注册赠送积分活动 691542