Fast-Training Deep Learning Algorithm for Multiplex Quantification of Mammalian Bioproduction Metabolites via Contactless Short-Wave Infrared Hyperspectral Sensing

高光谱成像 人工智能 计算机科学 生物反应器 生物系统 算法 模式识别(心理学) 化学 生物 有机化学
作者
Anjana Hevaganinge,Callie M. Weber,Anna Filatova,Amy Musser,Anthony Neri,Jessica Conway,Yiding Yuan,Maurizio Cattaneo,Alisa Morss Clyne,Tao Yang
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (16): 14774-14783 被引量:2
标识
DOI:10.1021/acsomega.3c00861
摘要

Within the biopharmaceutical sector, there exists the need for a contactless multiplex sensor, which can accurately detect metabolite levels in real time for precise feedback control of a bioreactor environment. Reported spectral sensors in the literature only work when fully submerged in the bioreactor and are subject to probe fouling due to a cell debris buildup. The use of a short-wave infrared (SWIR) hyperspectral (HS) cam era allows for efficient, fully contactless collection of large spectral datasets for metabolite quantification. Here, we report the development of an interpretable deep learning system, a convolution metabolite regression (CMR) approach that detects glucose and lactate concentrations using label-free contactless HS images of cell-free spent media samples from Chinese hamster ovary (CHO) cell growth flasks. Using a dataset of <500 HS images, these CMR algorithms achieved a competitive test root-mean-square error (RMSE) performance of glucose quantification within 27 mg/dL and lactate quantification within 20 mg/dL. Conventional Raman spectroscopy probes report a validation performance of 26 and 18 mg/dL for glucose and lactate, respectively. The CMR system trains within 10 epochs and uses a convolution encoder with a sparse bottleneck regression layer to pick the best-performing filters learned by CMR. Each of these filters is combined with existing interpretable models to produce a metabolite sensing system that automatically removes spurious predictions. Collectively, this work will advance the safe and efficient adoption of contactless deep learning sensing systems for fine control of a variety of bioreactor environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张蓓瑶发布了新的文献求助10
刚刚
风中刺猬发布了新的文献求助10
1秒前
热心市民范女士完成签到,获得积分10
3秒前
3秒前
3秒前
搜集达人应助zsc采纳,获得10
4秒前
4秒前
6秒前
7秒前
9秒前
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
月白应助科研通管家采纳,获得30
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
11秒前
CC发布了新的文献求助10
11秒前
所所应助且歌且行采纳,获得10
12秒前
大段儿发布了新的文献求助10
15秒前
活力板凳完成签到,获得积分10
16秒前
Huang发布了新的文献求助10
16秒前
Ava应助yan采纳,获得10
19秒前
研友_VZG7GZ应助shgd采纳,获得10
20秒前
yiyiyi完成签到,获得积分10
21秒前
852应助东方天奇采纳,获得10
21秒前
23秒前
23秒前
23秒前
hug完成签到,获得积分0
23秒前
24秒前
25秒前
海bro完成签到 ,获得积分10
25秒前
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232940
求助须知:如何正确求助?哪些是违规求助? 2879558
关于积分的说明 8212027
捐赠科研通 2547095
什么是DOI,文献DOI怎么找? 1376547
科研通“疑难数据库(出版商)”最低求助积分说明 647658
邀请新用户注册赠送积分活动 623056