Fast-Training Deep Learning Algorithm for Multiplex Quantification of Mammalian Bioproduction Metabolites via Contactless Short-Wave Infrared Hyperspectral Sensing

高光谱成像 人工智能 计算机科学 生物反应器 生物系统 算法 模式识别(心理学) 化学 生物 有机化学
作者
Anjana Hevaganinge,Callie M. Weber,Anna Filatova,Amy Musser,Anthony Neri,Jessica Conway,Yiding Yuan,Maurizio Cattaneo,Alisa Morss Clyne,Tao Yang
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (16): 14774-14783 被引量:2
标识
DOI:10.1021/acsomega.3c00861
摘要

Within the biopharmaceutical sector, there exists the need for a contactless multiplex sensor, which can accurately detect metabolite levels in real time for precise feedback control of a bioreactor environment. Reported spectral sensors in the literature only work when fully submerged in the bioreactor and are subject to probe fouling due to a cell debris buildup. The use of a short-wave infrared (SWIR) hyperspectral (HS) cam era allows for efficient, fully contactless collection of large spectral datasets for metabolite quantification. Here, we report the development of an interpretable deep learning system, a convolution metabolite regression (CMR) approach that detects glucose and lactate concentrations using label-free contactless HS images of cell-free spent media samples from Chinese hamster ovary (CHO) cell growth flasks. Using a dataset of <500 HS images, these CMR algorithms achieved a competitive test root-mean-square error (RMSE) performance of glucose quantification within 27 mg/dL and lactate quantification within 20 mg/dL. Conventional Raman spectroscopy probes report a validation performance of 26 and 18 mg/dL for glucose and lactate, respectively. The CMR system trains within 10 epochs and uses a convolution encoder with a sparse bottleneck regression layer to pick the best-performing filters learned by CMR. Each of these filters is combined with existing interpretable models to produce a metabolite sensing system that automatically removes spurious predictions. Collectively, this work will advance the safe and efficient adoption of contactless deep learning sensing systems for fine control of a variety of bioreactor environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宗笑晴发布了新的文献求助10
刚刚
lucky完成签到,获得积分10
刚刚
糖糖发布了新的文献求助10
1秒前
1秒前
跳跃尔容完成签到,获得积分10
2秒前
wyblobin完成签到,获得积分10
2秒前
2秒前
3秒前
沉默沛岚完成签到,获得积分10
3秒前
丰知然应助宇文宛菡采纳,获得10
3秒前
所所应助tu采纳,获得30
4秒前
mechefy完成签到,获得积分10
4秒前
鲤鱼萧完成签到,获得积分10
5秒前
宗笑晴完成签到,获得积分10
5秒前
6秒前
小蘑菇应助头发乱了采纳,获得10
6秒前
代萌萌发布了新的文献求助10
7秒前
jucy发布了新的文献求助50
7秒前
7秒前
Lz完成签到,获得积分10
7秒前
Hello应助葛辉辉采纳,获得10
7秒前
秦嘉旎完成签到,获得积分10
8秒前
华仔应助通~采纳,获得10
8秒前
万能图书馆应助半颗橙子采纳,获得10
8秒前
樱铃完成签到,获得积分10
9秒前
9秒前
上官若男应助俭朴的明轩采纳,获得10
9秒前
1199发布了新的文献求助10
10秒前
英姑应助包容的过客采纳,获得10
11秒前
标致的战斗机完成签到,获得积分10
11秒前
科研人发布了新的文献求助10
12秒前
hl完成签到,获得积分10
12秒前
12秒前
12秒前
科研通AI5应助dingdong采纳,获得10
13秒前
Jasper应助幸福胡萝卜采纳,获得10
13秒前
爱看文献的小羽毛完成签到,获得积分10
13秒前
14秒前
song99发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762