Fast-Training Deep Learning Algorithm for Multiplex Quantification of Mammalian Bioproduction Metabolites via Contactless Short-Wave Infrared Hyperspectral Sensing

高光谱成像 人工智能 计算机科学 生物反应器 生物系统 算法 模式识别(心理学) 化学 生物 有机化学
作者
Anjana Hevaganinge,Callie M. Weber,Anna Filatova,Amy Musser,Anthony Neri,Jessica Conway,Yiding Yuan,Maurizio Cattaneo,Alisa Morss Clyne,Tao Yang
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (16): 14774-14783 被引量:2
标识
DOI:10.1021/acsomega.3c00861
摘要

Within the biopharmaceutical sector, there exists the need for a contactless multiplex sensor, which can accurately detect metabolite levels in real time for precise feedback control of a bioreactor environment. Reported spectral sensors in the literature only work when fully submerged in the bioreactor and are subject to probe fouling due to a cell debris buildup. The use of a short-wave infrared (SWIR) hyperspectral (HS) cam era allows for efficient, fully contactless collection of large spectral datasets for metabolite quantification. Here, we report the development of an interpretable deep learning system, a convolution metabolite regression (CMR) approach that detects glucose and lactate concentrations using label-free contactless HS images of cell-free spent media samples from Chinese hamster ovary (CHO) cell growth flasks. Using a dataset of <500 HS images, these CMR algorithms achieved a competitive test root-mean-square error (RMSE) performance of glucose quantification within 27 mg/dL and lactate quantification within 20 mg/dL. Conventional Raman spectroscopy probes report a validation performance of 26 and 18 mg/dL for glucose and lactate, respectively. The CMR system trains within 10 epochs and uses a convolution encoder with a sparse bottleneck regression layer to pick the best-performing filters learned by CMR. Each of these filters is combined with existing interpretable models to produce a metabolite sensing system that automatically removes spurious predictions. Collectively, this work will advance the safe and efficient adoption of contactless deep learning sensing systems for fine control of a variety of bioreactor environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Younglee完成签到,获得积分10
3秒前
3秒前
xiaoxuan完成签到,获得积分10
4秒前
5秒前
Garnieta完成签到,获得积分10
6秒前
彤光赫显发布了新的文献求助10
7秒前
7秒前
浔城游侠完成签到,获得积分10
8秒前
8秒前
失眠的板栗完成签到,获得积分10
9秒前
蝶步韶华发布了新的文献求助10
11秒前
Jay发布了新的文献求助10
11秒前
jbhb发布了新的文献求助10
13秒前
幸运星发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
19秒前
小王完成签到 ,获得积分10
22秒前
liuyunhao7207发布了新的文献求助10
22秒前
Nugget发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
25秒前
蝶步韶华完成签到,获得积分10
25秒前
SciGPT应助wade采纳,获得10
27秒前
稳重水卉完成签到,获得积分10
30秒前
我是老大应助111采纳,获得10
31秒前
33秒前
情怀应助天真的高山采纳,获得10
34秒前
万能图书馆应助高木采纳,获得10
35秒前
积极以云完成签到,获得积分10
36秒前
36秒前
38秒前
CyrusSo524应助zzz采纳,获得10
39秒前
123完成签到,获得积分10
40秒前
兔子先生完成签到 ,获得积分10
41秒前
向日葵完成签到,获得积分10
43秒前
科研通AI5应助天天采纳,获得10
43秒前
彤光赫显完成签到,获得积分10
45秒前
long0809完成签到,获得积分10
48秒前
天天快乐应助段一帆采纳,获得10
50秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174