Dry bean cultivars classification using deep cnn features and salp swarm algorithm based extreme learning machine

人工智能 极限学习机 机器学习 支持向量机 粒子群优化 群体智能 分类器(UML) 算法 计算机科学 模式识别(心理学) 人工神经网络
作者
Musa Doğan,Yavuz Selim Taşpınar,İlkay Çınar,Ramazan Kursun,İlker Ali Özkan,Murat Köklü
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107575-107575 被引量:66
标识
DOI:10.1016/j.compag.2022.107575
摘要

Since dry bean varieties have different qualities and economic values, their separation is of great importance in the field of agriculture. In recent years, the use of artificial intelligence-supported and image-based systems has become widespread for this process. This study aims to create a data set consisting of 14 classes in the detection of dry beans and to investigate the effectiveness of the hybrid structure of the extreme learning machine (ELM) model with GoogLeNet transfer learning on this dataset. At the same time, the salp swarm algorithm (SSA), which is one of the swarm intelligence algorithms, was used to test its applicability in ELM classifier by optimizing ELM parameters. The performance of these models was compared with ELM-based particle swarm optimization, harris hawks optimization, artificial bee colony, and traditional machine learning algorithms such as support vector machine and k-nearest neighbor. The suggested SSA-ELM model successfully classifies 14 different types of dry beans with a success rate of 91.43%. The comparable results demonstrate that the proposed hybrid model had better classification accuracy and performance metrics than traditional machine learning algorithms. In addition, it is seen that the use of image data, extraction of deep features, and classification with optimized ELM in the classification of dry beans have achieved comparable success in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
调皮紫文发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
莫仔完成签到 ,获得积分10
1秒前
2秒前
2秒前
好困应助北沐卿采纳,获得10
2秒前
苏哲发布了新的文献求助10
2秒前
turtle发布了新的文献求助10
2秒前
欢喜猕猴桃完成签到 ,获得积分10
4秒前
丘比特应助小小苏荷采纳,获得10
4秒前
4秒前
4秒前
ai吃发布了新的文献求助30
4秒前
潭镜完成签到 ,获得积分20
4秒前
ycy关闭了ycy文献求助
4秒前
早日发paper完成签到,获得积分10
4秒前
江湖护卫舰应助12334采纳,获得10
5秒前
5秒前
5秒前
ding应助橘子叶采纳,获得10
6秒前
彩色的若颜完成签到,获得积分10
6秒前
星辰大海应助夜雨时采纳,获得10
6秒前
英俊的铭应助mty采纳,获得10
6秒前
6秒前
伊尔完成签到 ,获得积分10
6秒前
6秒前
7秒前
Nian_xinyue完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
gf完成签到,获得积分20
8秒前
cyx发布了新的文献求助10
9秒前
可耐的寒松完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668