清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dry bean cultivars classification using deep cnn features and salp swarm algorithm based extreme learning machine

人工智能 极限学习机 机器学习 支持向量机 粒子群优化 群体智能 分类器(UML) 算法 计算机科学 模式识别(心理学) 人工神经网络
作者
Musa Doğan,Yavuz Selim Taşpınar,İlkay Çınar,Ramazan Kursun,İlker Ali Özkan,Murat Köklü
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107575-107575 被引量:66
标识
DOI:10.1016/j.compag.2022.107575
摘要

Since dry bean varieties have different qualities and economic values, their separation is of great importance in the field of agriculture. In recent years, the use of artificial intelligence-supported and image-based systems has become widespread for this process. This study aims to create a data set consisting of 14 classes in the detection of dry beans and to investigate the effectiveness of the hybrid structure of the extreme learning machine (ELM) model with GoogLeNet transfer learning on this dataset. At the same time, the salp swarm algorithm (SSA), which is one of the swarm intelligence algorithms, was used to test its applicability in ELM classifier by optimizing ELM parameters. The performance of these models was compared with ELM-based particle swarm optimization, harris hawks optimization, artificial bee colony, and traditional machine learning algorithms such as support vector machine and k-nearest neighbor. The suggested SSA-ELM model successfully classifies 14 different types of dry beans with a success rate of 91.43%. The comparable results demonstrate that the proposed hybrid model had better classification accuracy and performance metrics than traditional machine learning algorithms. In addition, it is seen that the use of image data, extraction of deep features, and classification with optimized ELM in the classification of dry beans have achieved comparable success in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AneyWinter66应助微S采纳,获得10
2秒前
小田完成签到 ,获得积分10
16秒前
goodsheep完成签到 ,获得积分10
26秒前
helen李完成签到 ,获得积分10
27秒前
赵赵完成签到 ,获得积分10
30秒前
科科通通完成签到,获得积分10
34秒前
柴郡喵完成签到,获得积分10
38秒前
0m0完成签到 ,获得积分10
42秒前
zm完成签到 ,获得积分10
47秒前
大饼完成签到 ,获得积分10
58秒前
空白完成签到 ,获得积分10
1分钟前
xinjiasuki完成签到 ,获得积分10
1分钟前
1分钟前
小天小天完成签到 ,获得积分10
1分钟前
白昼完成签到 ,获得积分10
1分钟前
弧光完成签到 ,获得积分0
1分钟前
feiyang完成签到 ,获得积分10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
图南完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zw完成签到,获得积分10
2分钟前
Xzx1995完成签到 ,获得积分10
2分钟前
如意书桃完成签到 ,获得积分10
2分钟前
大雪完成签到 ,获得积分10
2分钟前
2分钟前
年轻千愁完成签到 ,获得积分10
2分钟前
蔡勇强完成签到 ,获得积分10
2分钟前
Wenwen0809完成签到 ,获得积分20
2分钟前
海贼王的男人完成签到 ,获得积分10
2分钟前
从全世界路过完成签到 ,获得积分10
3分钟前
3分钟前
詹姆斯哈登完成签到,获得积分10
3分钟前
彩色的芷容完成签到 ,获得积分10
3分钟前
fdwonder完成签到,获得积分10
3分钟前
个性松完成签到 ,获得积分10
3分钟前
点点完成签到 ,获得积分10
3分钟前
Hu完成签到,获得积分20
3分钟前
现实的曼安完成签到 ,获得积分10
3分钟前
chichenglin完成签到 ,获得积分0
3分钟前
OSASACB完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628626
求助须知:如何正确求助?哪些是违规求助? 4717900
关于积分的说明 14964650
捐赠科研通 4786466
什么是DOI,文献DOI怎么找? 2555860
邀请新用户注册赠送积分活动 1517014
关于科研通互助平台的介绍 1477700