Dry bean cultivars classification using deep cnn features and salp swarm algorithm based extreme learning machine

人工智能 极限学习机 机器学习 支持向量机 粒子群优化 群体智能 分类器(UML) 算法 计算机科学 模式识别(心理学) 人工神经网络
作者
Musa Doğan,Yavuz Selim Taspınar,İlkay Çinar,Ramazan Kursun,İlker Ali Özkan,Murat Köklü
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107575-107575 被引量:37
标识
DOI:10.1016/j.compag.2022.107575
摘要

Since dry bean varieties have different qualities and economic values, their separation is of great importance in the field of agriculture. In recent years, the use of artificial intelligence-supported and image-based systems has become widespread for this process. This study aims to create a data set consisting of 14 classes in the detection of dry beans and to investigate the effectiveness of the hybrid structure of the extreme learning machine (ELM) model with GoogLeNet transfer learning on this dataset. At the same time, the salp swarm algorithm (SSA), which is one of the swarm intelligence algorithms, was used to test its applicability in ELM classifier by optimizing ELM parameters. The performance of these models was compared with ELM-based particle swarm optimization, harris hawks optimization, artificial bee colony, and traditional machine learning algorithms such as support vector machine and k-nearest neighbor. The suggested SSA-ELM model successfully classifies 14 different types of dry beans with a success rate of 91.43%. The comparable results demonstrate that the proposed hybrid model had better classification accuracy and performance metrics than traditional machine learning algorithms. In addition, it is seen that the use of image data, extraction of deep features, and classification with optimized ELM in the classification of dry beans have achieved comparable success in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌安青完成签到 ,获得积分10
1秒前
3秒前
meng发布了新的文献求助10
4秒前
喜悦的尔阳完成签到,获得积分10
5秒前
夏天呀完成签到,获得积分10
6秒前
Tal完成签到,获得积分10
9秒前
嘻嘻哈哈完成签到 ,获得积分10
10秒前
ccc完成签到 ,获得积分10
12秒前
小丫头大傻妞完成签到 ,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
qing_he应助D4采纳,获得20
15秒前
犹豫机器猫完成签到,获得积分10
16秒前
19秒前
墨茗棋秒发布了新的文献求助20
20秒前
20秒前
31秒前
32秒前
深情安青应助诸乘风采纳,获得10
33秒前
35秒前
郝宝真发布了新的文献求助10
37秒前
jry完成签到 ,获得积分10
37秒前
38秒前
端庄的煎蛋完成签到,获得积分10
39秒前
41秒前
43秒前
打打应助gliterr采纳,获得10
45秒前
十三完成签到,获得积分10
46秒前
阳洋发布了新的文献求助10
46秒前
稳重雁开发布了新的文献求助10
47秒前
小猴子发布了新的文献求助10
47秒前
cloudanime完成签到,获得积分10
47秒前
48秒前
psc完成签到,获得积分10
49秒前
cloudanime发布了新的文献求助10
52秒前
靓丽宛亦完成签到,获得积分10
52秒前
53秒前
十三发布了新的文献求助10
54秒前
李健应助墨茗棋秒采纳,获得10
56秒前
57秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187