亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TCU-Net: Transformer and Convolutional Neural Network-Based Advanced U-Net for Concealed Object Detection

计算机科学 人工智能 卷积神经网络 变压器 编码器 模式识别(心理学) 分割 特征学习 目标检测 深度学习 计算机视觉 工程类 电压 电气工程 操作系统
作者
Kyeong-Beom Park,Jae Yeol Lee
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 122347-122360 被引量:5
标识
DOI:10.1109/access.2022.3223424
摘要

Camouflaged object detection (COD) seeks to find concealed objects hidden in natural surroundings. COD is challenging since it has to distinguish intrinsic similarities between foreground objects and background surroundings, unlike salient object detection. Convolutional neural network (CNN)-based approaches are proposed to overcome this challenge. However, they have inherent limitations in modeling and extracting global contexts. Although Transformer-based approaches are proposed to tackle this problem, which can maintain the semantic features of input images, they have limitations in learning localized spatial features in the limited receptive field. Therefore, one of the main challenges is to conduct accurate and robust COD while maintaining global contexts without sacrificing low-level contexts. This study proposes a novel concealed object detection and segmentation method using Transformer and CNN-based advanced U-Net (TCU-Net). TCU-Net can extract globalized semantic features using the Swin Transformer-based encoder and localized spatial features using the attentive inception decoder. In particular, multi-dilated residual (MDR) blocks connecting the encoder and decoder generate refined multi-level features to improve discriminability. Finally, the attentive inception decoder generates the final camouflaged object mask by maintaining the localized spatial information. Instead of simple up-sampling of the feature map, the attentive inception decoder conducts cascaded deconvolution through inception and attention modules. A weighted hybrid loss function is used for optimizing the model, consisting of the binary cross entropy (BCE) and intersection over union (IoU) losses. We comprehensively compared the proposed TCU-Net with previous studies by analyzing different metrics based on four public datasets, such as CAMO, CHAMELEON, COD10K, and NC4K. An ablation study was also conducted to evaluate network architectures and loss functions to verify advantages of the proposed approach. Experimental analysis on public datasets proves that the proposed TCU-Net outperforms previous approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANG完成签到 ,获得积分10
5秒前
zjzyw完成签到 ,获得积分10
10秒前
17秒前
Chasing完成签到 ,获得积分10
38秒前
科研通AI2S应助草木采纳,获得10
39秒前
小蘑菇应助ybh采纳,获得10
1分钟前
1分钟前
1分钟前
傅飞风完成签到,获得积分10
1分钟前
1分钟前
傅飞风发布了新的文献求助10
1分钟前
葛力发布了新的文献求助10
1分钟前
1分钟前
手术刀完成签到 ,获得积分10
1分钟前
1分钟前
虚心醉蝶完成签到 ,获得积分10
1分钟前
1分钟前
ctc完成签到,获得积分20
1分钟前
ctc发布了新的文献求助20
1分钟前
SciGPT应助xc采纳,获得10
2分钟前
打打应助葛力采纳,获得10
2分钟前
2分钟前
王志鹏完成签到 ,获得积分10
2分钟前
xc发布了新的文献求助10
2分钟前
2分钟前
陈陈陈完成签到 ,获得积分10
2分钟前
ybh发布了新的文献求助10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
2分钟前
科研河马发布了新的文献求助10
2分钟前
啦啦啦完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
ZHY发布了新的文献求助10
3分钟前
呆呆小猪完成签到,获得积分10
4分钟前
tian发布了新的文献求助10
4分钟前
AireenBeryl531完成签到,获得积分0
4分钟前
粽子完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736624
求助须知:如何正确求助?哪些是违规求助? 3280584
关于积分的说明 10020070
捐赠科研通 2997270
什么是DOI,文献DOI怎么找? 1644507
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648