Mapping user interest into hyper-spherical space: A novel POI recommendation method

超球体 计算机科学 兴趣点 人工智能 数据挖掘 排名(信息检索) 情报检索 机器学习
作者
Mingxin Gan,Yingxue Ma
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (2): 103169-103169 被引量:11
标识
DOI:10.1016/j.ipm.2022.103169
摘要

Point-of-interest (POI) recommendation helps users quickly filter out irrelevant POI by considering the spatio-temporal factor. In this paper, we address the problem of check-in preference modeling in POI recommendation, and propose a novel POI recommendation method that depicts user preference by constructing unique hypersphere interest model for each user. Different from existing works, we have done three innovative work. (1) We build a check-in graph and adopt DeepWalk algorithm to learn POI embedding, further aggregating them to obtain a hypersphere interest space with an interest center and interest radius. (2) We established a stacked neural network module by a bidirectional LSTM, a self-attention and a memory network, to grasp memory features contained in check-in histories. (3) We proposed a novel candidate POI filter method that updates ranking score by evaluating the Euclidean distance between the vectors of candidate POI and interest center. We evaluate the performance of our method on the four real-world check-in datasets constructed from Foursquare. The comparison between our method and six baselines demonstrates the outstanding performance on various measurements. Compared to the best baseline method, our method achieves about 50% performance improvement on NDCG. In terms of MRR, Precision and Recall, our method achieves about 37%, 21% and 9% performance improvement over the best baseline method. Further ablation experiments verified the importance and effectiveness of the hypersphere interest model, as removing this component caused significant performance degradation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮灯泡发布了新的文献求助30
刚刚
哎哎发布了新的文献求助10
刚刚
岳普发布了新的文献求助10
1秒前
1秒前
2秒前
lihuanmoon发布了新的文献求助10
3秒前
3秒前
dundun发布了新的文献求助30
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
小魏完成签到,获得积分10
5秒前
5秒前
6秒前
紫气东来应助DAYTOY采纳,获得10
6秒前
hygge发布了新的文献求助10
7秒前
SUNINE完成签到,获得积分10
8秒前
纯情的凡双完成签到 ,获得积分10
8秒前
噗噗发布了新的文献求助10
8秒前
TCXXS完成签到 ,获得积分10
9秒前
9秒前
酷波er应助xiaoweiba采纳,获得10
10秒前
11秒前
11秒前
ding应助D&L采纳,获得10
11秒前
刘旭阳完成签到,获得积分10
11秒前
李柏桐发布了新的文献求助10
12秒前
12秒前
Tingting发布了新的文献求助10
12秒前
ange完成签到 ,获得积分10
12秒前
纯情的凡双关注了科研通微信公众号
13秒前
鸡爪发布了新的文献求助10
14秒前
复杂焦完成签到,获得积分10
14秒前
田様应助www采纳,获得10
14秒前
西蜀小吏发布了新的文献求助10
15秒前
16秒前
Waris发布了新的文献求助30
16秒前
16秒前
16秒前
花卷发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648490
求助须知:如何正确求助?哪些是违规求助? 4775560
关于积分的说明 15044364
捐赠科研通 4807469
什么是DOI,文献DOI怎么找? 2570809
邀请新用户注册赠送积分活动 1527552
关于科研通互助平台的介绍 1486499