Mapping user interest into hyper-spherical space: A novel POI recommendation method

超球体 计算机科学 兴趣点 人工智能 数据挖掘 排名(信息检索) 情报检索 机器学习
作者
Mingxin Gan,Yingxue Ma
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (2): 103169-103169 被引量:11
标识
DOI:10.1016/j.ipm.2022.103169
摘要

Point-of-interest (POI) recommendation helps users quickly filter out irrelevant POI by considering the spatio-temporal factor. In this paper, we address the problem of check-in preference modeling in POI recommendation, and propose a novel POI recommendation method that depicts user preference by constructing unique hypersphere interest model for each user. Different from existing works, we have done three innovative work. (1) We build a check-in graph and adopt DeepWalk algorithm to learn POI embedding, further aggregating them to obtain a hypersphere interest space with an interest center and interest radius. (2) We established a stacked neural network module by a bidirectional LSTM, a self-attention and a memory network, to grasp memory features contained in check-in histories. (3) We proposed a novel candidate POI filter method that updates ranking score by evaluating the Euclidean distance between the vectors of candidate POI and interest center. We evaluate the performance of our method on the four real-world check-in datasets constructed from Foursquare. The comparison between our method and six baselines demonstrates the outstanding performance on various measurements. Compared to the best baseline method, our method achieves about 50% performance improvement on NDCG. In terms of MRR, Precision and Recall, our method achieves about 37%, 21% and 9% performance improvement over the best baseline method. Further ablation experiments verified the importance and effectiveness of the hypersphere interest model, as removing this component caused significant performance degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
团团2018完成签到,获得积分10
2秒前
saxg_hu完成签到,获得积分10
3秒前
3秒前
小宇发布了新的文献求助10
4秒前
sherly完成签到,获得积分20
4秒前
4秒前
4秒前
madao完成签到,获得积分10
4秒前
优美从菡完成签到,获得积分10
6秒前
HT-Wang完成签到 ,获得积分10
6秒前
雨泽发布了新的文献求助10
7秒前
9秒前
岑夜南发布了新的文献求助10
9秒前
心灵美的香旋完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
GTRK发布了新的文献求助30
10秒前
11秒前
-ZHY-应助wuwuwu1wu采纳,获得10
12秒前
ZX0501完成签到,获得积分10
12秒前
小果完成签到,获得积分10
13秒前
Monica完成签到,获得积分10
13秒前
Li发布了新的文献求助10
13秒前
木子完成签到,获得积分10
14秒前
临时演员完成签到,获得积分0
14秒前
14秒前
852应助入秋的杰尼龟采纳,获得30
14秒前
14秒前
15秒前
完美世界应助plm采纳,获得10
15秒前
想个名字完成签到,获得积分10
15秒前
哎嘿应助岑夜南采纳,获得10
16秒前
田田发布了新的文献求助150
16秒前
小胖发布了新的文献求助20
16秒前
杰克李李发布了新的文献求助10
16秒前
qq完成签到,获得积分10
16秒前
IAMXC发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143406
求助须知:如何正确求助?哪些是违规求助? 2794708
关于积分的说明 7812043
捐赠科研通 2450840
什么是DOI,文献DOI怎么找? 1304134
科研通“疑难数据库(出版商)”最低求助积分说明 627179
版权声明 601386