亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Scale-Equivalent Distillation for Semi-Supervised Object Detection

计算机科学 人工智能 正规化(语言学) 目标检测 加权 模式识别(心理学) 对象(语法) 比例(比率) 机器学习 一致性(知识库) 差异(会计) 班级(哲学) 物理 会计 量子力学 业务 放射科 医学
作者
Qiushan Guo,Yao Mu,Jianyu Chen,Tianqi Wang,Yizhou Yu,Ping Luo
标识
DOI:10.1109/cvpr52688.2022.01412
摘要

Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, i.e., generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals. Although they achieved certain success, the limited labeled data in semi-supervised learning scales up the challenges of object detection. We analyze the challenges these methods meet with the empirical experiment results. We find that the massive False Negative samples and inferior localization precision lack consideration. Besides, the large variance of object sizes and class imbalance (i.e., the extreme ratio between back-ground and object) hinder the performance of prior arts. Further, we overcome these challenges by introducing a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance. SED has several appealing benefits compared to the previous works. (1) SED imposes a consistency regularization to handle the large scale variance problem. (2) SED alleviates the noise problem from the False Negative samples and inferior localization precision. (3) A re-weighting strategy can implicitly screen the potential foreground regions of the unlabeled data to reduce the effect of class imbalance. Extensive experiments show that SED consistently outperforms the recent state-of-the-art methods on different datasets with significant margins. For example, it surpasses the supervised counterpart by more than 10 mAP when using 5% and 10% labeled data on MS-COCO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助何hao采纳,获得10
3秒前
哆啦B梦发布了新的文献求助10
8秒前
24秒前
ruru123发布了新的文献求助10
29秒前
哆啦B梦完成签到,获得积分10
32秒前
33秒前
华仔应助ruru123采纳,获得10
51秒前
xiaoyinni应助科研通管家采纳,获得10
54秒前
xiaoyinni应助科研通管家采纳,获得10
54秒前
xiaoyinni应助科研通管家采纳,获得10
54秒前
xiaoyinni应助科研通管家采纳,获得10
54秒前
FashionBoy应助Soya_FERRUM采纳,获得10
1分钟前
1分钟前
1分钟前
ruru123发布了新的文献求助10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
我是老大应助ruru123采纳,获得10
2分钟前
Soya_FERRUM发布了新的文献求助10
2分钟前
cao_bq完成签到,获得积分10
2分钟前
隐形曼青应助Karol采纳,获得10
2分钟前
Lucas应助ZgnomeshghT采纳,获得10
2分钟前
科研通AI5应助Karol采纳,获得10
2分钟前
FMHChan完成签到,获得积分10
3分钟前
3分钟前
何hao发布了新的文献求助10
3分钟前
馆长举报清水求助涉嫌违规
3分钟前
小包完成签到,获得积分10
3分钟前
华仔应助小包采纳,获得10
3分钟前
何hao完成签到,获得积分10
4分钟前
余悸完成签到 ,获得积分10
4分钟前
馆长举报藤井树求助涉嫌违规
4分钟前
小羊咩完成签到 ,获得积分0
4分钟前
4分钟前
pwh完成签到,获得积分20
4分钟前
4分钟前
4分钟前
曲聋五完成签到 ,获得积分0
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019542
求助须知:如何正确求助?哪些是违规求助? 4258442
关于积分的说明 13271168
捐赠科研通 4063435
什么是DOI,文献DOI怎么找? 2222599
邀请新用户注册赠送积分活动 1231647
关于科研通互助平台的介绍 1154803