Scale-Equivalent Distillation for Semi-Supervised Object Detection

计算机科学 人工智能 正规化(语言学) 目标检测 加权 模式识别(心理学) 对象(语法) 比例(比率) 机器学习 一致性(知识库) 差异(会计) 班级(哲学) 物理 会计 量子力学 业务 放射科 医学
作者
Qiushan Guo,Yao Mu,Jianyu Chen,Tianqi Wang,Yizhou Yu,Ping Luo
标识
DOI:10.1109/cvpr52688.2022.01412
摘要

Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, i.e., generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals. Although they achieved certain success, the limited labeled data in semi-supervised learning scales up the challenges of object detection. We analyze the challenges these methods meet with the empirical experiment results. We find that the massive False Negative samples and inferior localization precision lack consideration. Besides, the large variance of object sizes and class imbalance (i.e., the extreme ratio between back-ground and object) hinder the performance of prior arts. Further, we overcome these challenges by introducing a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance. SED has several appealing benefits compared to the previous works. (1) SED imposes a consistency regularization to handle the large scale variance problem. (2) SED alleviates the noise problem from the False Negative samples and inferior localization precision. (3) A re-weighting strategy can implicitly screen the potential foreground regions of the unlabeled data to reduce the effect of class imbalance. Extensive experiments show that SED consistently outperforms the recent state-of-the-art methods on different datasets with significant margins. For example, it surpasses the supervised counterpart by more than 10 mAP when using 5% and 10% labeled data on MS-COCO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
zcl应助科研通管家采纳,获得20
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
浮生若梦应助科研通管家采纳,获得10
1秒前
浮生若梦应助科研通管家采纳,获得10
1秒前
浮生若梦应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得30
1秒前
2秒前
善学以致用应助康康采纳,获得10
2秒前
王欣茹发布了新的文献求助10
2秒前
海绵宝宝发布了新的文献求助10
3秒前
4秒前
风中黎昕完成签到 ,获得积分10
5秒前
5秒前
5秒前
zhongying发布了新的文献求助10
6秒前
Dr_JennyZ完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
海绵宝宝完成签到,获得积分10
8秒前
10秒前
沧化发布了新的文献求助10
11秒前
11秒前
柳沙鸣发布了新的文献求助10
12秒前
yangjun发布了新的文献求助10
13秒前
十一嘞发布了新的文献求助10
14秒前
织心发布了新的文献求助10
14秒前
逍遥自在完成签到,获得积分10
15秒前
Hui完成签到,获得积分10
15秒前
铮铮发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914