Scale-Equivalent Distillation for Semi-Supervised Object Detection

计算机科学 人工智能 正规化(语言学) 目标检测 加权 模式识别(心理学) 对象(语法) 比例(比率) 机器学习 一致性(知识库) 差异(会计) 班级(哲学) 物理 会计 量子力学 业务 放射科 医学
作者
Qiushan Guo,Yao Mu,Jianyu Chen,Tianqi Wang,Yizhou Yu,Ping Luo
标识
DOI:10.1109/cvpr52688.2022.01412
摘要

Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, i.e., generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals. Although they achieved certain success, the limited labeled data in semi-supervised learning scales up the challenges of object detection. We analyze the challenges these methods meet with the empirical experiment results. We find that the massive False Negative samples and inferior localization precision lack consideration. Besides, the large variance of object sizes and class imbalance (i.e., the extreme ratio between back-ground and object) hinder the performance of prior arts. Further, we overcome these challenges by introducing a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance. SED has several appealing benefits compared to the previous works. (1) SED imposes a consistency regularization to handle the large scale variance problem. (2) SED alleviates the noise problem from the False Negative samples and inferior localization precision. (3) A re-weighting strategy can implicitly screen the potential foreground regions of the unlabeled data to reduce the effect of class imbalance. Extensive experiments show that SED consistently outperforms the recent state-of-the-art methods on different datasets with significant margins. For example, it surpasses the supervised counterpart by more than 10 mAP when using 5% and 10% labeled data on MS-COCO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助wml采纳,获得10
刚刚
粘粘纸完成签到,获得积分10
刚刚
孤海未蓝发布了新的文献求助10
刚刚
BLDC888完成签到,获得积分10
刚刚
桐桐应助快乐人杰采纳,获得10
1秒前
MH完成签到,获得积分10
2秒前
萧水白发布了新的文献求助30
3秒前
王二发布了新的文献求助10
4秒前
123456789完成签到,获得积分10
6秒前
7秒前
7秒前
9秒前
爱拱地的小林猪完成签到,获得积分10
9秒前
11秒前
打打应助淡然老头采纳,获得10
12秒前
天气好好完成签到,获得积分10
12秒前
高挑的涛发布了新的文献求助10
12秒前
scl发布了新的文献求助10
13秒前
唔昂wang完成签到,获得积分10
13秒前
14秒前
快乐人杰发布了新的文献求助10
14秒前
16秒前
祯果粒发布了新的文献求助10
17秒前
17秒前
addd发布了新的文献求助10
19秒前
scl完成签到,获得积分10
19秒前
20秒前
美好焦发布了新的文献求助10
20秒前
xuan完成签到,获得积分10
21秒前
现代鸣凤完成签到,获得积分10
22秒前
23秒前
铜离子完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
无私的芹应助西瓜鹿采纳,获得10
24秒前
隐形曼青应助超级芷云采纳,获得10
25秒前
bkagyin应助图图侠采纳,获得10
25秒前
Rhan完成签到,获得积分10
25秒前
26秒前
现实的访云给现实的访云的求助进行了留言
26秒前
哈哈哈哈发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309