超级电容器
阴极
阳极
材料科学
电化学
无定形固体
硫化钴
化学工程
功率密度
纳米技术
电极
化学
电容
工程类
热力学
结晶学
功率(物理)
物理
物理化学
作者
Haiyang Wang,Miaomiao Liang,Hao Ma,Bingsen Zhang,Zhun Guo,Jing Wang,Yuzhen Zhao,Najeeb ur RehmanLashari,Zongcheng Miao
标识
DOI:10.1016/j.est.2022.106322
摘要
The interfacial engineering via surface amorphization is an effective strategy to regulate the structure and character of material. Herein, a facile hydrothermal method followed by NaBH4 treatment is proposed to fabricate surface-amorphized Co3S4 (SA-Co3S4). XRD and SEM characterization implies the micro flower structure of Co3S4. TEM test further demonstrates the heterointerface between crystal Co3S4 core and defect-rich amorphous Co3S4 surface, which can reduce electron/ion transport path and accelerate internal charge transfer rate, thus enhancing the integral electrical conductivity. Electrochemical measurements imply that the SA-Co3S4 displays satisfying specific capacitance of 1043.9 F g−1 at 0.5 A g−1 and good rate performance. By employing SA-Co3S4 as a cathode, and active carbon as an anode, the asymmetric supercapacitor exhibits a high energy density of 41.9 Wh kg−1 at a power density of 162 W kg−1 and good cycling durability (above 90 % retention rate after 10,000 cycles). This work offers a novel structure design strategy for fabricating cobalt sulfide materials with high conductivity and electrochemical performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI