Employee attrition prediction in a pharmaceutical company using both machine learning approach and qualitative data

损耗 人力资源 独创性 定性性质 计算机科学 人力资源管理 数据收集 知识管理 定性研究 机器学习 数据科学 管理 统计 数学 社会学 经济 牙科 医学 社会科学
作者
Fatemeh Mozaffari,Marzieh Rahimi,Hamid Reza Yazdani,Babak Sohrabi
出处
期刊:Benchmarking: An International Journal [Emerald (MCB UP)]
卷期号:30 (10): 4140-4173 被引量:9
标识
DOI:10.1108/bij-11-2021-0664
摘要

Purpose This research intends to develop a model for predicting employees at a high-risk attrition and identify the most important factors affecting them. Design/methodology/approach In this study, using the triangulation technique of a mixed research method, the employee attrition problem is investigated by identifying its affecting factors. For that matter, data related to the human resources department of a pharmaceutical company in Iran are used. And to achieve the intended goal, advanced data mining algorithms and interviews with human resource managers are applied. Findings A model for predicting employees at a high-risk attrition is presented based on the gradient boosting machine algorithm with 89% accuracy. The use of the mixed research approach shows that qualitative and quantitative methods can be more effective in identifying the factors affecting employee churn or loss of staff. The results also contain a new situation arising out of the COVID-19 pandemic and remote working scenarios having impact on employee attrition. Finally, human resource policies are presented based on variables related to each of the identified factors. Originality/value The novel contributions of this study include real data related to a leading pharmaceutical company as well as a combination of two quantitative and qualitative methods. The hybrid approach can identify the reasons for attrition and, consequently, retention policies to benefit from the advantage of both approaches. Data mining can be useful to identify the factors, which are usually not mentioned in termination interviews, such as direct managers. On the other hand, the results obtained from termination interviews can also include features that the authors cannot identify through data mining, which are specifically related to the characteristics of the pharmaceutical industry such as building a more professional career path. From a practical perspective, since this company specializes in pharmaceutical marketing in a new way and is primarily comprised graduates, it is important to note that the churn of specialized people disperses organizational and technological know-how. On the other hand, the pharmacist community in Iran is small, and their attrition might adversely affect not only the reputation of an organization but the employer's brand as well. So, this research would help other similar firms in retaining their valuable human capital.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KIQING发布了新的文献求助10
刚刚
Joy发布了新的文献求助10
1秒前
搞怪绿茶发布了新的文献求助10
1秒前
传奇3应助鱼儿采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
tuanheqi应助科研通管家采纳,获得50
2秒前
yar应助科研通管家采纳,获得10
2秒前
zyyyyyu完成签到,获得积分10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
yar应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得30
2秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
淡然的面包完成签到,获得积分20
3秒前
3秒前
3秒前
何平完成签到,获得积分20
3秒前
研友_VZG7GZ应助wolf采纳,获得10
4秒前
guoduan完成签到,获得积分10
4秒前
peekaboo发布了新的文献求助10
4秒前
CodeCraft应助迷路代玉采纳,获得10
4秒前
Wmin完成签到,获得积分10
5秒前
5秒前
Aubrey发布了新的文献求助10
5秒前
5秒前
尛瞐慶成完成签到,获得积分10
6秒前
qiaoxixi发布了新的文献求助10
7秒前
9秒前
小垃圾发布了新的文献求助10
9秒前
10秒前
ilaveu完成签到,获得积分10
10秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328109
求助须知:如何正确求助?哪些是违规求助? 2958209
关于积分的说明 8589546
捐赠科研通 2636464
什么是DOI,文献DOI怎么找? 1443022
科研通“疑难数据库(出版商)”最低求助积分说明 668490
邀请新用户注册赠送积分活动 655711