CloudDeepLabV3+: a lightweight ground-based cloud segmentation method based on multi-scale feature aggregation and multi-level attention feature enhancement

计算机科学 特征(语言学) 云计算 特征提取 人工智能 棱锥(几何) 分割 模式识别(心理学) 联营 图像分割 计算机视觉 数据挖掘 数学 几何学 操作系统 哲学 语言学
作者
Sheng Yan Li,Min Wang,Jia Wu,Shuo Sun,Zhihao Zhuang
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (15): 4836-4856 被引量:6
标识
DOI:10.1080/01431161.2023.2240034
摘要

The segmentation of ground-based cloud images is the basis for obtaining numerous cloud parameters. To achieve high-precision adaptive cloud image segmentation requirements, this study designs a lightweight ground-based cloud image adaptive segmentation method named CloudDeepLabV3+ that integrates multi-scale features aggregation and multi-level attention feature enhancement. Firstly, a novel lightweight EfficientNetV2-S is designed as a feature extraction backbone to reduce network parameters. Secondly, a heterogeneous receptive field splicing atrous spatial pyramid pooling module is designed. It enhances the correlation of information between layers, and realizes multiscale information fusion. The feature enhancement module based on the self-attention mechanism intensifies the representation of local and global features. Thirdly, the feature alignment module based on the attention mechanism is constructed to pull deep and shallow features for alignment. Finally, we implement ablation study on the key components of method and comparison experiment with other advanced methods using five evaluation metrics. Results show that the key components play an important role in multiscale information fusion. It promotes the accuracy of cloud image feature extraction while reducing the loss of detailed features. Generalization performance verification indicates the excellent performance of the proposed model in advanced cloud feature extraction and cloud-mask generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助ff采纳,获得10
刚刚
Hello应助如意冰棍采纳,获得10
刚刚
徐昊雯发布了新的文献求助10
刚刚
Jasper应助啊刮痧采纳,获得10
刚刚
典雅的俊驰完成签到,获得积分10
刚刚
1秒前
Answer完成签到,获得积分10
1秒前
FashionBoy应助叶梓采纳,获得10
1秒前
田様应助ze采纳,获得10
1秒前
大个应助昱旻采纳,获得10
2秒前
2秒前
Ava应助夜已深采纳,获得10
3秒前
3秒前
爆米花应助尤珩采纳,获得10
3秒前
xss关闭了xss文献求助
3秒前
4秒前
不加糖完成签到,获得积分10
4秒前
wanayu发布了新的文献求助10
5秒前
zxzb发布了新的文献求助10
5秒前
研友_Zb1rln完成签到,获得积分10
5秒前
上官若男应助dy采纳,获得10
6秒前
6秒前
6秒前
毅梦完成签到,获得积分10
6秒前
6秒前
Master_Ye发布了新的文献求助10
7秒前
酒尚温完成签到 ,获得积分10
7秒前
7秒前
徐昊雯发布了新的文献求助10
7秒前
8秒前
8秒前
跳跃墨镜发布了新的文献求助10
9秒前
十六夜完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
11秒前
丰富的鞅完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437