Predicting functional impairment in euthymic patients with mood disorder: A 5-year follow-up

心情 社会心理的 重性抑郁障碍 焦虑 心理学 人口 临床心理学 广泛性焦虑症 情绪障碍 双相情感障碍 精神科 医学 环境卫生
作者
Kyara Rodrigues de Aguiar,Bruno Braga Montezano,Jacson Gabriel Feiten,Devon Watts,André Zimerman,Thaíse Campos Mondin,Ricardo Azevedo da Silva,Luciano Dias de Mattos Souza,Flávio Kapczinski,Taiane de Azevedo Cardoso,Karen Jansen,Ives Cavalcante Passos
出处
期刊:Psychiatry Research-neuroimaging [Elsevier BV]
卷期号:: 115404-115404
标识
DOI:10.1016/j.psychres.2023.115404
摘要

Major Depressive Disorder and Bipolar Disorder are psychiatric disorders associated with psychosocial impairment. Despite clinical improvement, functional complaints usually remain, mainly impairing occupational and cognitive performance. The aim of this study was to use machine learning techniques to predict functional impairment in patients with mood disorders. For that, analyzes were performed using a population-based cohort study. Participants diagnosed with a mood disorder at baseline and reassessed were considered (n = 282). Random forest (RF) with previous recursive feature selection and LASSO algorithms were applied to a training set with imputed data by bagged trees resulting in two main models. Following recursive feature selection, 25 variables were retained. The RF model had the best performance compared to LASSO. The most important variables in predicting functional impairment were sexual abuse, severity of depressive, anxiety, and somatic symptoms, physical neglect, emotional abuse, and physical abuse. The model demonstrated acceptable performance to predict functional impairment. However, our sample is composed of young participants and the model may not generalize to older individuals with mood disorders. More studies are needed in this direction. The presented calculator has clinical, sociodemographic, and environmental data, demonstrating that it is possible to use such information to predict functional performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
axhh发布了新的文献求助10
1秒前
笨笨的愫应助番茄大王采纳,获得10
2秒前
2秒前
皮蛋solo粥发布了新的文献求助10
2秒前
2秒前
kong完成签到,获得积分10
2秒前
3秒前
盛景洲发布了新的文献求助10
3秒前
十令完成签到,获得积分10
3秒前
3秒前
orixero应助一心搞科研采纳,获得10
4秒前
称心道消发布了新的文献求助10
5秒前
5秒前
慕青应助瘦瘦慕凝采纳,获得10
6秒前
6秒前
moneymonoo完成签到,获得积分10
6秒前
6秒前
勤恳的雨文完成签到,获得积分10
6秒前
7秒前
聪慧小霜应助sharronjxx采纳,获得10
7秒前
勤奋青寒发布了新的文献求助10
8秒前
赘婿应助海盐采纳,获得30
8秒前
9秒前
可爱的函函应助Tiffany采纳,获得10
9秒前
诸葛朝雪完成签到,获得积分10
9秒前
10秒前
san行发布了新的文献求助10
10秒前
moneymonoo发布了新的文献求助10
11秒前
11秒前
阿翔完成签到,获得积分10
11秒前
闪闪寒云完成签到 ,获得积分10
11秒前
11秒前
JYY发布了新的文献求助10
11秒前
寒战发布了新的文献求助10
12秒前
tzj发布了新的文献求助10
12秒前
一心搞科研完成签到,获得积分10
13秒前
等风来关注了科研通微信公众号
13秒前
13秒前
搜集达人应助坦率的含海采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585651
求助须知:如何正确求助?哪些是违规求助? 4002263
关于积分的说明 12389980
捐赠科研通 3678396
什么是DOI,文献DOI怎么找? 2027345
邀请新用户注册赠送积分活动 1060821
科研通“疑难数据库(出版商)”最低求助积分说明 947307