Predicting functional impairment in euthymic patients with mood disorder: A 5-year follow-up

心情 社会心理的 重性抑郁障碍 焦虑 心理学 人口 临床心理学 广泛性焦虑症 情绪障碍 双相情感障碍 精神科 医学 环境卫生
作者
Kyara Rodrigues de Aguiar,Bruno Braga Montezano,Jacson Gabriel Feiten,Devon Watts,André Zimerman,Thaíse Campos Mondin,Ricardo Azevedo da Silva,Luciano Dias de Mattos Souza,Flávio Kapczinski,Taiane de Azevedo Cardoso,Karen Jansen,Ives Cavalcante Passos
出处
期刊:Psychiatry Research-neuroimaging [Elsevier BV]
卷期号:: 115404-115404
标识
DOI:10.1016/j.psychres.2023.115404
摘要

Major Depressive Disorder and Bipolar Disorder are psychiatric disorders associated with psychosocial impairment. Despite clinical improvement, functional complaints usually remain, mainly impairing occupational and cognitive performance. The aim of this study was to use machine learning techniques to predict functional impairment in patients with mood disorders. For that, analyzes were performed using a population-based cohort study. Participants diagnosed with a mood disorder at baseline and reassessed were considered (n = 282). Random forest (RF) with previous recursive feature selection and LASSO algorithms were applied to a training set with imputed data by bagged trees resulting in two main models. Following recursive feature selection, 25 variables were retained. The RF model had the best performance compared to LASSO. The most important variables in predicting functional impairment were sexual abuse, severity of depressive, anxiety, and somatic symptoms, physical neglect, emotional abuse, and physical abuse. The model demonstrated acceptable performance to predict functional impairment. However, our sample is composed of young participants and the model may not generalize to older individuals with mood disorders. More studies are needed in this direction. The presented calculator has clinical, sociodemographic, and environmental data, demonstrating that it is possible to use such information to predict functional performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助yeyong11采纳,获得10
1秒前
w__k完成签到 ,获得积分10
1秒前
科研式发布了新的文献求助10
2秒前
李健的小迷弟应助黄晃晃采纳,获得10
2秒前
科研通AI5应助绿豆饼采纳,获得10
2秒前
搜集达人应助LL采纳,获得10
3秒前
领导范儿应助缓慢的衫采纳,获得10
3秒前
orixero应助熊宇涵采纳,获得10
4秒前
4秒前
5秒前
我是老大应助缥缈的凝丹采纳,获得10
6秒前
zhang完成签到,获得积分10
6秒前
充电宝应助从容万恶采纳,获得10
6秒前
6秒前
7秒前
7秒前
SciGPT应助gs采纳,获得10
8秒前
8秒前
8秒前
粗犷的沛容应助asdfqwer采纳,获得50
8秒前
9秒前
10秒前
10秒前
10秒前
黄晃晃完成签到,获得积分20
10秒前
陈同学发布了新的文献求助10
10秒前
超级微笑发布了新的文献求助10
11秒前
11秒前
孟宪岗发布了新的文献求助10
12秒前
13秒前
13秒前
清脆亿先完成签到,获得积分10
13秒前
人间大清醒完成签到,获得积分10
14秒前
15秒前
15秒前
不想太多发布了新的文献求助20
15秒前
特独斩发布了新的文献求助10
15秒前
lynn发布了新的文献求助10
15秒前
wop111应助方hh采纳,获得20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933494
求助须知:如何正确求助?哪些是违规求助? 4201667
关于积分的说明 13054312
捐赠科研通 3975738
什么是DOI,文献DOI怎么找? 2178554
邀请新用户注册赠送积分活动 1194827
关于科研通互助平台的介绍 1106265