Predicting functional impairment in euthymic patients with mood disorder: A 5-year follow-up

心情 社会心理的 重性抑郁障碍 焦虑 心理学 人口 临床心理学 广泛性焦虑症 情绪障碍 双相情感障碍 精神科 医学 环境卫生
作者
Kyara Rodrigues de Aguiar,Bruno Braga Montezano,Jacson Gabriel Feiten,Devon Watts,André Zimerman,Thaíse Campos Mondin,Ricardo Azevedo da Silva,Luciano Dias de Mattos Souza,Flávio Kapczinski,Taiane de Azevedo Cardoso,Karen Jansen,Ives Cavalcante Passos
出处
期刊:Psychiatry Research-neuroimaging [Elsevier]
卷期号:: 115404-115404
标识
DOI:10.1016/j.psychres.2023.115404
摘要

Major Depressive Disorder and Bipolar Disorder are psychiatric disorders associated with psychosocial impairment. Despite clinical improvement, functional complaints usually remain, mainly impairing occupational and cognitive performance. The aim of this study was to use machine learning techniques to predict functional impairment in patients with mood disorders. For that, analyzes were performed using a population-based cohort study. Participants diagnosed with a mood disorder at baseline and reassessed were considered (n = 282). Random forest (RF) with previous recursive feature selection and LASSO algorithms were applied to a training set with imputed data by bagged trees resulting in two main models. Following recursive feature selection, 25 variables were retained. The RF model had the best performance compared to LASSO. The most important variables in predicting functional impairment were sexual abuse, severity of depressive, anxiety, and somatic symptoms, physical neglect, emotional abuse, and physical abuse. The model demonstrated acceptable performance to predict functional impairment. However, our sample is composed of young participants and the model may not generalize to older individuals with mood disorders. More studies are needed in this direction. The presented calculator has clinical, sociodemographic, and environmental data, demonstrating that it is possible to use such information to predict functional performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaoyh_gc完成签到,获得积分10
3秒前
lcxszsd完成签到 ,获得积分10
6秒前
7秒前
yi蔚完成签到 ,获得积分10
9秒前
zyy_luck发布了新的文献求助10
11秒前
朴素访琴完成签到 ,获得积分10
12秒前
五十完成签到,获得积分10
14秒前
gobi完成签到 ,获得积分10
16秒前
学术完成签到 ,获得积分10
19秒前
luo完成签到 ,获得积分10
21秒前
狗子爱吃桃桃完成签到 ,获得积分10
23秒前
yy完成签到 ,获得积分10
29秒前
烟火会翻滚完成签到,获得积分10
29秒前
30秒前
希望天下0贩的0应助考拉采纳,获得10
31秒前
chens627完成签到,获得积分10
32秒前
wyq完成签到 ,获得积分10
32秒前
Servant2023完成签到,获得积分10
33秒前
信封完成签到 ,获得积分10
34秒前
斯文败类应助Shann采纳,获得10
34秒前
35秒前
Zoeytam完成签到,获得积分10
35秒前
小木子发布了新的文献求助10
38秒前
38秒前
丹妮完成签到,获得积分10
38秒前
mofei完成签到,获得积分10
39秒前
机灵晓刚完成签到 ,获得积分10
39秒前
活泼的机器猫完成签到,获得积分10
40秒前
有机发布了新的文献求助10
43秒前
43秒前
勤奋的立果完成签到 ,获得积分10
45秒前
45秒前
三石SUN完成签到 ,获得积分10
48秒前
科研通AI2S应助woods采纳,获得10
50秒前
SciGPT应助有机采纳,获得10
50秒前
早睡早起完成签到,获得积分10
50秒前
lalala发布了新的文献求助10
50秒前
奋斗的夜山完成签到 ,获得积分10
53秒前
pb完成签到,获得积分10
55秒前
机灵石头完成签到,获得积分10
57秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790643
关于积分的说明 7795972
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626300
版权声明 601176