Predicting functional impairment in euthymic patients with mood disorder: A 5-year follow-up

心情 社会心理的 重性抑郁障碍 焦虑 心理学 人口 临床心理学 广泛性焦虑症 情绪障碍 双相情感障碍 精神科 医学 环境卫生
作者
Kyara Rodrigues de Aguiar,Bruno Braga Montezano,Jacson Gabriel Feiten,Devon Watts,André Zimerman,Thaíse Campos Mondin,Ricardo Azevedo da Silva,Luciano Dias de Mattos Souza,Flávio Kapczinski,Taiane de Azevedo Cardoso,Karen Jansen,Ives Cavalcante Passos
出处
期刊:Psychiatry Research-neuroimaging [Elsevier BV]
卷期号:: 115404-115404
标识
DOI:10.1016/j.psychres.2023.115404
摘要

Major Depressive Disorder and Bipolar Disorder are psychiatric disorders associated with psychosocial impairment. Despite clinical improvement, functional complaints usually remain, mainly impairing occupational and cognitive performance. The aim of this study was to use machine learning techniques to predict functional impairment in patients with mood disorders. For that, analyzes were performed using a population-based cohort study. Participants diagnosed with a mood disorder at baseline and reassessed were considered (n = 282). Random forest (RF) with previous recursive feature selection and LASSO algorithms were applied to a training set with imputed data by bagged trees resulting in two main models. Following recursive feature selection, 25 variables were retained. The RF model had the best performance compared to LASSO. The most important variables in predicting functional impairment were sexual abuse, severity of depressive, anxiety, and somatic symptoms, physical neglect, emotional abuse, and physical abuse. The model demonstrated acceptable performance to predict functional impairment. However, our sample is composed of young participants and the model may not generalize to older individuals with mood disorders. More studies are needed in this direction. The presented calculator has clinical, sociodemographic, and environmental data, demonstrating that it is possible to use such information to predict functional performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
浊酒发布了新的文献求助10
3秒前
脑洞疼应助酷雅的小跟班采纳,获得10
4秒前
4秒前
zyn完成签到 ,获得积分10
4秒前
5秒前
泽锦臻发布了新的文献求助10
6秒前
gg完成签到 ,获得积分20
7秒前
9秒前
ED应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
11秒前
圆你心安发布了新的文献求助10
12秒前
叶海成完成签到,获得积分20
13秒前
13秒前
优雅的涵瑶完成签到,获得积分20
16秒前
泥嚎完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
李健应助chen采纳,获得10
19秒前
lc339发布了新的文献求助10
22秒前
lllth完成签到,获得积分10
24秒前
26秒前
liaodongjun应助一坨采纳,获得30
26秒前
28秒前
lc339完成签到,获得积分10
28秒前
keyanrubbish发布了新的文献求助10
29秒前
叮咚完成签到,获得积分10
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991847
求助须知:如何正确求助?哪些是违规求助? 3532997
关于积分的说明 11260291
捐赠科研通 3272252
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425