Quadruple parameter adaptation growth optimizer with integrated distribution, confrontation, and balance features for optimization

计算机科学 数学优化 最优化问题 适应(眼睛) 元启发式 操作员(生物学) 算法 数学 生物化学 转录因子 基因 光学 物理 抑制因子 化学
作者
Hao Gao,Qingke Zhang,Xianglong Bu,Huaxiang Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:235: 121218-121218 被引量:11
标识
DOI:10.1016/j.eswa.2023.121218
摘要

Growth optimizer is a novel metaheuristic algorithm that has powerful numerical optimization capabilities. However, its parameters and search operators become crucial factors that significantly impact its optimization capability for engineering problems and benchmarks. Therefore, this paper proposes a quadruple parameter adaptation growth optimizer (QAGO) integrated with distribution, confrontation, and balance features. In QAGO, the quadruple parameter adaptation mechanism aims to reduce the algorithmic sensitivity for parameter setting and enhance the algorithmic adaptability. By employing parameter sampling that adheres to specific probability distributions, the parameter adaptation mechanism achieves dynamic tuning of the algorithm hyperparameters. Moreover, one-dimensional mapping and fitness difference methods are designed in the triple parameter self-adaptation mechanism based on the contradictory relationship to adjust the operator's parameters. After that, "spear" and "shield" are balanced based on the Jensen–Shannon divergence in information theory. Furthermore, the topological structure of the operators is redesigned, and by combining the parameter adaptation mechanism, operator refinement is achieved. Refined operators can effectively utilize different evolutionary information to improve the quality of the solution. The experiment evaluates the performance of QAGO on distinct optimization problems on the CEC 2017 and CEC 2022 test suites. To demonstrate the capability of QAGO in solving real-world applications, it was applied to tackle two specific problems: multilevel threshold image segmentation and wireless sensor network node deployment. The results demonstrated that QAGO delivers highly promising optimization results compared to seventy-one high-performance competing algorithms, including the five IEEE CEC competition winners. The source code of the QAGO algorithm is publicly available at https://github.com/tsingke/QAGO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
drchen发布了新的文献求助10
1秒前
庞mou发布了新的文献求助10
1秒前
完美世界应助LIXI采纳,获得10
2秒前
我是老大应助彩色的过客采纳,获得10
3秒前
QQ完成签到,获得积分10
4秒前
百里雅青发布了新的文献求助10
4秒前
欣慰小丸子应助玥瑶采纳,获得10
4秒前
萧水白应助科研通管家采纳,获得10
4秒前
典雅碧空应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
iNk应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
lff完成签到,获得积分10
6秒前
彩霞完成签到,获得积分10
6秒前
6秒前
756333725完成签到,获得积分10
7秒前
aobacae完成签到,获得积分10
7秒前
Orange应助liuguohua126采纳,获得10
7秒前
Dky_安静的初夏完成签到,获得积分10
7秒前
科研小白发布了新的文献求助10
7秒前
叭叭完成签到,获得积分10
8秒前
卓垚完成签到,获得积分10
8秒前
勤劳母鸡完成签到,获得积分10
8秒前
哭泣青烟完成签到 ,获得积分10
8秒前
Accept完成签到,获得积分10
8秒前
Key关闭了Key文献求助
8秒前
关关难过关关过完成签到,获得积分10
9秒前
油炸小麻花完成签到,获得积分10
9秒前
Elec发布了新的文献求助10
9秒前
赵一丁完成签到,获得积分10
9秒前
冬瓜熊发布了新的文献求助10
10秒前
风中冷风完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904