Quadruple parameter adaptation growth optimizer with integrated distribution, confrontation, and balance features for optimization

计算机科学 数学优化 最优化问题 适应(眼睛) 元启发式 操作员(生物学) 算法 数学 生物化学 转录因子 基因 光学 物理 抑制因子 化学
作者
Hao Gao,Qingke Zhang,Xianglong Bu,Huaxiang Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:235: 121218-121218 被引量:11
标识
DOI:10.1016/j.eswa.2023.121218
摘要

Growth optimizer is a novel metaheuristic algorithm that has powerful numerical optimization capabilities. However, its parameters and search operators become crucial factors that significantly impact its optimization capability for engineering problems and benchmarks. Therefore, this paper proposes a quadruple parameter adaptation growth optimizer (QAGO) integrated with distribution, confrontation, and balance features. In QAGO, the quadruple parameter adaptation mechanism aims to reduce the algorithmic sensitivity for parameter setting and enhance the algorithmic adaptability. By employing parameter sampling that adheres to specific probability distributions, the parameter adaptation mechanism achieves dynamic tuning of the algorithm hyperparameters. Moreover, one-dimensional mapping and fitness difference methods are designed in the triple parameter self-adaptation mechanism based on the contradictory relationship to adjust the operator's parameters. After that, "spear" and "shield" are balanced based on the Jensen–Shannon divergence in information theory. Furthermore, the topological structure of the operators is redesigned, and by combining the parameter adaptation mechanism, operator refinement is achieved. Refined operators can effectively utilize different evolutionary information to improve the quality of the solution. The experiment evaluates the performance of QAGO on distinct optimization problems on the CEC 2017 and CEC 2022 test suites. To demonstrate the capability of QAGO in solving real-world applications, it was applied to tackle two specific problems: multilevel threshold image segmentation and wireless sensor network node deployment. The results demonstrated that QAGO delivers highly promising optimization results compared to seventy-one high-performance competing algorithms, including the five IEEE CEC competition winners. The source code of the QAGO algorithm is publicly available at https://github.com/tsingke/QAGO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康康发布了新的文献求助10
刚刚
dd关注了科研通微信公众号
刚刚
serenity711完成签到 ,获得积分10
1秒前
yar应助梨梨梨采纳,获得10
1秒前
cuicui发布了新的文献求助10
2秒前
2秒前
2秒前
追寻的飞薇完成签到,获得积分10
2秒前
YANG完成签到 ,获得积分10
3秒前
Xiaoz完成签到 ,获得积分10
4秒前
选课发布了新的文献求助30
4秒前
怕孤单的安莲完成签到,获得积分10
4秒前
4秒前
李健的小迷弟应助石狗西采纳,获得10
5秒前
称心乐枫发布了新的文献求助10
5秒前
内向翰完成签到,获得积分10
5秒前
勇哥哥完成签到,获得积分10
6秒前
Vicki完成签到,获得积分10
6秒前
7秒前
7秒前
wang完成签到,获得积分10
8秒前
9秒前
敬老院N号应助祁郁郁采纳,获得10
9秒前
10秒前
123关闭了123文献求助
10秒前
CodeCraft应助康康采纳,获得10
11秒前
康康XY完成签到 ,获得积分10
11秒前
干净青槐完成签到,获得积分20
12秒前
衎儿发布了新的文献求助10
13秒前
Xiangyang发布了新的文献求助10
13秒前
CodeCraft应助marry采纳,获得10
14秒前
15秒前
所所应助K_采纳,获得10
16秒前
阔达故事完成签到,获得积分10
16秒前
好像树胶完成签到,获得积分10
17秒前
亓泽融发布了新的文献求助10
17秒前
星河梦枕发布了新的文献求助50
18秒前
石狗西发布了新的文献求助10
18秒前
时米米米完成签到,获得积分10
19秒前
19秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262101
求助须知:如何正确求助?哪些是违规求助? 2902863
关于积分的说明 8322892
捐赠科研通 2572852
什么是DOI,文献DOI怎么找? 1397880
科研通“疑难数据库(出版商)”最低求助积分说明 653941
邀请新用户注册赠送积分活动 632506